获奖情况:
1) 2023年,第七届“全国大学生集成电路创新创业大赛” 优秀指导教师
2) 2022年,第十七届“中国研究生电子设计竞赛”优秀指导教师
3) 2022年,第六届“全国大学生集成电路创新创业大赛” 优秀指导教师
4) 2021年,第五届“全国大学生集成电路创新创业大赛” 优秀指导教师
5) 2020年,第四届“全国大学生集成电路创新创业大赛” 优秀指导教师
6) 2020年,西安交通大学(2017级本科)优秀专业实习队指导教师
7) 2019年,第三届“全国大学生集成电路创新创业大赛”优秀指导教师
8) 2019年,西安交通大学(2016级本科)优秀专业实习队指导教师
9) 2018年,第二届“全国大学生集成电路创新创业大赛”优秀指导教师
10) 2018年,西安交通大学(2015级本科)优秀专业实习队指导教师
11) 2017年,第一届“全国大学生集成电路创新创业大赛”优秀指导教师
12) 2017年,西安交通大学(2014级本科)优秀专业实习队指导教师
13) 2016年,清华大学“启航奖”个人金奖
代表论文(通讯作者加*):
[1] Yishuo Meng, Siwei Xiang, Jianfei Wang, Jia Hou, Chen Yang*, “ALSCA: A Large-Scale Sparse CNN Accelerator using Position-first Dataflow and Input Channel Merging Approach” [J], IEEE Transactions on Circuits and Systems II: Express Briefs (TCAS-II), 2024, in press.
[2] Jia Hou, Zichu Liu, Zepeng Yang, Chen Yang*, “Hardware Trojan Attacks on the Reconfigurable Interconnections of FPGA-Based CNN Accelerators and a PUF-based Countermeasure Detection Technique” [J], Micromachines, 2024, 15(1): 149.
[3] Fahong Zhang, Chen Yang*, et al., “An Efficient and Scalable FHE-based PDQ Scheme: Utilizing FFT to Design a Low Multiplication Depth Large-Integer Comparison Algorithm” [J], IEEE Transactions on Information Forensics & Security (TIFS), 2024, 19: 2258-2272.
[4] Siwei Xiang, Xianxian Lv, Yishuo Meng, Jianfei Wang, Cimang Lu, Chen Yang*, “WRA-MF: A Bit-Level Convolutional-Weight-Decomposition Approach to Improve Parallel Computing Efficiency for Winograd-Based CNN Acceleration” [J], Electronics, 2023, 12(24): 4943.
[5] Jianfei Wang, Chen Yang*, et al., “A High-Throughput and Scalable Schoolbook Polynomial Multiplier for Accelerating Saber on FPGA using a Novel Winograd-Based Architecture” [J], IEEE Transactions on Circuits and Systems II: Express Briefs (TCAS-II), 2024, 71(4): 2344-2348.
[6] Jianfei Wang, Chen Yang*, et al., “A High-Throughput Toom-Cook-4 Polynomial Multiplier for Lattice-Based Cryptography using a Novel Winograd-Schoolbook Algorithm” [J], IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I), 2024, 71(1): 359-372.
[7] Jia Hou, Jingyu Zhang, Qi Chen, Siwei Xiang, Yishuo Meng, Jianfei Wang, Cimang Lu, Chen Yang*, “POSS-CNN: An Automatically Generated Convolutional Neural Network with Precision and Operation Separable Structure Aiming at Target Recognition and Detection” [J], Information, 2023, 14(11): 604.
[8] Chen Yang, Yishuo Meng, et al., “WRA-SS: A High-Performance Accelerator Integrating Winograd with Structured Sparsity for Convolutional Neural Networks” [J], IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 2024, 32(1): 164-177.
[9] Chen Yang, Yaoyao Yang, et al., “Flexible and Efficient Convolutional Acceleration on Unified Hardware using the Two-Stage Splitting Method and Layer-Adaptive Allocation of 1-D/2-D Winograd Units” [J], IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2024, 43(3): 919-932.
[10] Yishuo Meng, Chen Yang*, et al., “An Efficient CNN Accelerator Achieving High PE Utilization Using a Dense-/Sparse-Aware Redundancy Reduction Method and Data–Index Decoupling Workflow” [J], IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(10): 1537-1550.
[11] Chen Yang, Junfeng Wu, et al., “A High-Throughput and Flexible Architecture Based on a Reconfigurable Mixed-Radix FFT with Twiddle Factor Compression and Conflict-Free Access” [J], IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(10): 1472-1485.
[12] Yifan Gong, Jinshuo Zhang, Xin Liu, Jialin Li, Ying Lei, Zhe Zhang, Chen Yang*, Li Geng*, “A Real-Time and Efficient Optical Flow Tracking Accelerator on FPGA Platform” [J], IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I), 2023, 70(12): 4914-4927.
[13] Jianfei Wang, Chen Yang*, et al., “TCPM: A Reconfigurable and Efficient Toom-Cook-Based Polynomial Multiplier over Rings using a Novel Compressed Postprocessing Algorithm” [J], IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(8): 1153-1166.
[14] Yang Su, Bailong Yang, Jianfei Wang, Fahong Zhang, Chen Yang*, “Reconfigurable multi-core array architecture and mapping method for RNS-based homomophic encryption” [J], AEU - International Journal of Electronics and Communications (AEUE), 2023, 161(154562): 1-16.
[15] Chen Yang, Yishuo Meng, et al., “A Sparse CNN Accelerator for Eliminating Redundant Computations in Intra- and Inter- Convolutional/Pooling Layers” [J], IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(12): 1902-1915.
[16] Chen Yang, Kai‑Bo Huo, et al., “DRGN: A Dynamically Reconfigurable Accelerator for Graph Neural Networks” [J], Journal of Ambient Intelligence and Humanized Computing (AIHC), 2022, 2022(9): 1-16.
[17] Chen Yang, Jia Hou, et al., “RNA: A Flexible and Efficient Accelerator based on Dynamically Reconfigurable Computing for Multiple Convolutional Neural Networks” [J], Journal of Circuits, Systems, and Computers (JCSC), 2022, 31(16): 2250289.
[18] Yang Su, Bailong Yang, Chen Yang*, et al., “A Highly Unified Reconfigurable Multicore Architecture to Speedup NTT/INTT for Homomorphic Polynomial Multiplication” [J], IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(8): 993-1006.
[19] Yang Su, Bailong Yang, Chen Yang*, et al., “ReMCA: A Reconfigurable Multi-Core Architecture for Full RNS Variant of BFV Homomorphic Evaluation” [J], IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I), 2022, 69(7): 2857-2870.
[20] Chen Yang, Qi Chen, et al., “SDF-SLAM: A Deep Learning based Highly Accurate SLAM using Monocular Camera aiming at Indoor Map Reconstruction with Semantic and Depth Fusion” [J], IEEE ACCESS, 2022, 10: 10259-10272.
[21] Chen Yang, Jingyu Zhang, et al., “UL-CNN: An Ultra-Lightweight Convolutional Neural Network aiming at Flash-based Computing-In-Memory Architecture for Pedestrian Recognition” [J], Journal of Circuits, Systems, and Computers (JCSC), 2021, 30(2): 2150022.
[22] Yang Su, Bai‑Long Yang, Chen Yang*, et al., “FPGA-based Hardware Accelerator for Leveled Ring-LWE Fully Homomorphic Encryption” [J], IEEE Access, 2020, 8: 168008-168025.
[23] Yang Su, Bai‑Long Yang, Chen Yang*, et al., “High-Flexible Hardware and Instruction of Composite Galois Field Multiplication Targeted at Symmetric Crypto Processor” [J], Journal of Ambient Intelligence and Humanized Computing (AIHC), 2020, 9(2): 1-17.
[24] Chen Yang, Yizhou Wang, et al., “A Stride-based Convolution Decomposition Method to Stretch CNN Acceleration Algorithms for Efficient and Flexible Hardware Implementation” [J], IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I), 2020, 67(9): 3007-3020.
[25] Chen Yang, Yizhou Wang, et al., “WRA: A 2.2-to-6.3 TOPS Highly Unified Dynamically Reconfigurable Accelerator Using a Novel Winograd Decomposition Algorithm for Convolutional Neural Networks” [J], IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I), 2019, 66(9): 3480-3493.
[26] Leibo Liu, Chen Yang*, et al., “CDPM: Context-Directed Pattern Matching Prefetching to Improve Coarse-Grained Reconfigurable Array Performance” [J], IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2018, 37(6): 1171-1184.
[27] Leibo Liu, Zhaoshi Li, Chen Yang*, et al., “HReA: An Energy-Efficient Embedded Dynamically Reconfigurable Fabric for 13-Dwarfs Processing” [J], IEEE Transactions on Circuits and Systems II: Express Briefs (TCAS-II), 2018, 65(3): 381-385.
[28] Chen Yang, Leibo Liu, et al., “CIACP: A Correlation- and Iteration- Aware Cache Partitioning Mechanism to Improve Performance of Multiple Coarse-Grained Reconfigurable Arrays” [J], IEEE Transactions on Parallel and Distributed Systems (TPDS), 2017, 28(1): 29-43.
[29] Chen Yang, Leibo Liu, et al., “Configuration Approaches to Enhance Computing Efficiency of Coarse-Grained Reconfigurable Array” [J], Journal of Circuits, Systems, and Computers (JCSC), 2015, 24(03): 1550043.
[30] Chen Yang, Leibo Liu, et al., “Efficient and Flexible Memory Architecture to Alleviate Data and Context Bandwidth Bottlenecks of Coarse-Grained Reconfigurable Array” [J], Science of China F: Physics, Mechanics & Astronomy, 2014, 57(12): 2214–2227.
[31] Yuheng Xia, Yishuo Meng, Siwei Xiang, Jianfei Wang, Chen Yang*, “An Efficient Hardware Implementation of Dilated Convolution Using a Novel Channel-Equivalent Decomposition Method” [C], Proceedings of the 6th IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2023: 1-2.
[32] Bokai Zeng, Chen Yang*, et al., “A Performance-driven Neural Network Compiler for Multi-core Computing-In-Memory Accelerator” [C], Proceedings of the IEEE 15th International Conference on ASIC (ASICON), 2023: 1-4.
[33] Zepeng Yang, Chen Yang*, et al., “An Acceleration Architecture of Polynomial Multiplication based on NTT for CKKS Homomorphic Evaluation” [C], Proceedings of the 8th International Conference on Integrated Circuits and Microsystems (ICICM), 2023: 1-5.
[34] Xin Liu, Yishuo Meng, Zhe Zhang, Jialin Li, Yifan Gong, Ying Lei, Chen Yang, Li Geng*, “Efficient Bicubic Interpolation Architecture for RGB Image Data Stream” [C], Proceedings of the 6th International Conference on Electronics Technology (ICET), 2023: 1356-1361.
[35] Chen Yang, Yawei Wang, et al., “CIMAX-Compiler: An End-to-End ANN Compiler for Heterogeneous Computing-In-Memory Platform” [C], Proceedings of the 6th World Conference on Computing and Communication Technologies (WCCCT), 2023: 1-5.
[36] Jialin Li, Liangji Zhang, Xuewei Shen, Yifan Gong, Ying Lei, Chen Yang, Li Geng, “A Hardware Architecture of Feature Extraction for Real-Time Visual SLAM” [C], Proceedings of the 48th Annual Conference of the IEEE Industrial Electronics Society (IECON), 2022: 1-6.
[37] Chen Yang, Yishuo Meng, et al., “A High-performance Hardware Accelerator using a Fusion Approach of Convolution and Pooling” [C], Proceedings of IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2022: 1-3.
[38] Chen Yang, Fahong Zhang, et al., “A Multiplication-Free FPGA Implementation of Multiple RLWE Encryption using Anti-Circulant Matrix” [C], Proceedings of IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2022: 1-3.
[39] Chen Yang, Zepeng Yang, et al., “A Lightweight Full Homomorphic Encryption Scheme on Fully-Connected Layer for CNN Hardware Accelerator Achieving Security Inference” [C], Proceedings of IEEE International Conference on Electronics Circuits and Systems (ICECS), 2021: 1-4.
[40] Chen Yang, Siwei Xiang, et al., “A High Performance and Full Utilization Hardware Implementation of Floating Point Arithmetic Units” [C], Proceedings of IEEE International Conference on Electronics Circuits and Systems (ICECS), 2021: 1-4.
[41] Chen Yang, Jia Hou, et al., “CRP: Context-Directed Replacement Policy to Improve Cache Performance for Coarse-Grained Reconfigurable Arrays” [C], Proceedings of IEEE International Conference on Electronics Circuits and Systems (ICECS), 2020: 1-2.
[42] Chen Yang, Xianxian Lv, et al., “MF-Conv: A Novel Convolutional Approach Using Bit-Resolution-based Weight Decomposition to Eliminate Multiplications for CNN Acceleration” [C], Proceedings of IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2020: 1-3.
[43] Chen Yang, Jia Hou, et al., “Hardware Trojan Attacks on the Reconfigurable Interconnections of Convolutional Neural Networks Accelerators” [C], Proceedings of IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2020: 1-3.
[44] Chen Yang, Bowen Li, et al., “A Fully Quantitative Scheme with Fine-grained Tuning Method for Lightweight CNN Acceleration” [C], Proceedings of IEEE International Conference on Electronics Circuits and Systems (ICECS), 2019: 1-2.
[45] Chen Yang, Jia Hou, et al., “CCP: Configuration Context based Prefetching to Improve Coarse-Grained Reconfigurable Array Performance” [C], Proceedings of IEEE International Conference on Electronics Circuits and Systems (ICECS), 2019: 1-2.
[46] Chen Yang, Yizhou Wang, et al., “A Reconfigurable CNN Accelerator using Tile-by-Tile Computing and Dynamic Adaptive Data Truncation” [C], Proceedings of IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2019: 73-74.
[47] Chen Yang, Yizhou Wang, et al., “A reconfigurable accelerator based on fast Winograd algorithm for convolutional neural network in Internet of Things” [C], Proceedings of IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2018: 1-3.
[48] Chen Yang, Haibo Zhang, et al., “An Energy-Efficient and Flexible Accelerator based on Reconfigurable Computing for Multiple Deep Convolutional Neural Networks” [C], Proceedings of IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2018: 1-3.
[49] Chen Yang, Leibo Liu, et al., “Data Cache Prefetching via Context Directed Pattern Matching for Coarse-Grained Reconfigurable Arrays” [C], Proceedings of ACM/IEEE Design Automation Conference (DAC), 2016: 1-6.
[50] Chen Yang, Leibo Liu, et al., “Cost-Effective Memory Architecture to Achieve Flexible Configuration and Efficient Data Transmission for Coarse-Grained Reconfigurable Array” [C], Proceedings of ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), 2015: 263-263.
[51] Chen Yang, Leibo Liu, et al., “Configuration Approaches to Improve Computing Efficiency of Coarse-Grained Reconfigurable Multimedia Processor” [C], Proceedings of IEEE International Conference on Field Programmable Logic and Applications (FPL), 2014: 1-4.
[52] 朱敏, 刘雷波, 尹首一, 杨晨, 王文杰, 魏少军. H.264计算密集型任务在可重构处理器上的映射. 电路与系统学报, 2013, (18)2: 366-370.
专利&软件著作权(获专利授权35项,登记软著3项):
1. 杨晨, 席嘉蔚, 等. 一种面向基于Winograd的CNN加速器系统的数据无冲突调度方法, 2024.4.5, 中国, ZL202111178327.4
2. 杨晨, 刘依维, 等. 一种位宽可变的求模运算方法及求模运算电路, 2024.4.2, 中国, ZL202110839603.0
3. 杨晨, 王佳兴, 等. 一种基于DSP的混合位宽加速器及融合计算方法, 2023.9.26, 中国, ZL202111605030.1
4. 杨晨, 杨尧尧, 等. 面向Winograd参数可调的卷积张量优化方法及系统, 2023.9.19, 中国, ZL202110883108.X
5. 杨晨, 耿龙飞, 等. 用于图神经网络推理的动态可重构PE单元及PE阵列, 2023.9.19, 中国, ZL202110853134.8
6. 杨晨, 吕娴娴, 等. 一种Winograd卷积运算加速方法及加速模块, 2023.9.19, 中国, ZL202110588325.6
7. 杨晨, 陈琦, 等. 基于深度语义融合的卷积神经网络的三维语义图重建方法, 2023.5.2, 中国, ZL202010350966.3
8. 杨晨, 张靖宇, 等. 基于多分支卷积神经网络的行人识别方法, 2023.5.2, 中国, ZL202010345173.2
9. 杨晨, 王逸洲, 等. 一种基于长短期记忆网络的缓存替换系统及方法, 2023.4.18, 中国, ZL202010390271.8
10. 杨晨, 王逸洲, 等. 一种面向卷积神经网络加速器的Winograd卷积拆分方法, 2023.4.7, 中国, ZL201910717929.9
11. 杨晨, 陈琦, 等. 基于卷积神经网络降低单目相机位姿估计误差率的方法, 2023.3.31, 中国, ZL202010351019.6
12. 杨晨, 耿龙飞, 等. 图数据预取器及预取方法, 2023.1.10, 中国, ZL202110707805.X
13. 杨晨, 侯佳, 等. 一种基于全连接层全同态加密运算的加速器安全分类方法, 2022.12.9, 中国, ZL202110997014.5
14. 杨晨, 吕娴娴, 等. 一种按照比特精度进行权重拆分的卷积运算加速方法, 2022.12.9, 中国, ZL202011192684.1
15. 杨晨, 王佳兴, 等. 基于FPGA实现低线数光栅条件下的直流电机角度控制电路, 2022.8.9, 中国, ZL202110240848.1
16. 杨晨, 任嵩楠, 等. 一种面向同态密码运算的密钥转换方法、系统、设备及可读存储介质, 2022.4.22, 中国, ZL202010832531.2
17. 杨晨, 张靖宇, 等. 并行选取超参数设计多分支卷积神经网络识别行人的方法, 2022.4.22, 中国, ZL202010346203.1
18. 杨晨, 王逸洲, 等. 一种高吞吐率的动态可重构卷积神经网络加速器, 2022.4.22, 中国, ZL201910718678.6
19. 杨晨, 王逸洲, 等. 一种面向物联网领域的动态可重构卷积神经网络加速器架构, 2022.2.22, 中国, ZL201811149741.0
20. 杨晨, 张海波, 等. 一种用于卷积神经网络计算的动态自适应数据截断方法, 2021.9.7, 中国, ZL201910395234.3
21. 杨晨, 王逸洲, 等. 高速可重构处理器配置信息缓存替换方法及存储体系结构, 2021.9.7, 中国, ZL201911056632.9
22. 杨晨, 杨泽鹏, 等. 基于FPGA的仲裁PUF木马检测及再使用方法, 2021.9.3, 中国, ZL201910974496.5
23. 杨晨, 张海波, 等. 一种用于卷积神经网络数据存储的多bank行列交织读写方法, 2021.8.13, 中国, ZL201910395235.8
24. 杨晨, 陈琦, 等. 一种面向内存计算和室内是否有人的神经网络设计方法, 2021.7.13, 中国, ZL201910584312.4
25. 杨晨, 王逸洲, 等. 一种面向深度学习的可重构处理器运算单元, 2021.7.13, 中国, ZL201810922918.X
26. 杨晨, 张海波, 等. 一种用于卷积神经网络加速的多层数据分区域联合计算方法, 2021.4.20, 中国, ZL201910395256.X
27. 杨晨, 侯佳, 等. 一种动态可重构处理器的数据缓存预取方法, 2021.1.19, 中国, ZL201811377387.7
28. 杨晨, 刘童博, 等. 一种可重构系统的缓存分区划分方法, 2020.11.10, 中国, ZL201811377375.4
29. 杨晨, 张海波, 等. 一种用于动态可重构阵列的卷积运算数据流调度方法, 2020.7.28, 中国, ZL201811115052.8
30. 杨晨, 王逸洲, 等. 一种面向深度学习可重构处理器的片上互联结构, 2020.5.22, 中国, ZL201810877106.8
31. 刘雷波, 杨晨, 等. 以配置信息驱动数据访存模式匹配的片上缓存预取机制, 2019.1.15, 中国, ZL201610317626.4
32. 刘雷波, 杨晨, 等. 共享片上缓存划分装置, 2017.7.28, 中国, ZL201510113193.6
33. 刘雷波, 杨晨, 等. 共享片上缓存划分装置, 2017.9.22, 中国, ZL201510112753.6
34. 李树国, 杨晨. 去块效应滤波器的方法与系统, 2009.3.18, 中国, ZL200610113115.7
35. 李树国, 杨晨. 高并行度的帧内预测器的实现方法, 2008.8.20, 中国, ZL200610113868.8
36. 杨晨, 杨尧尧, 等. 基于蓝牙控制和语音识别的智能直流电机控制系统V1.0. (软件著作权登记号: 2021SR0059718)
37. 杨晨, 陈琦, 等. 基于单目视觉的三维语义地图重建系统V1.0. (软件著作权登记号: 2020SR0751070)
38. 杨晨, 张靖宇, 等. 基于目标识别和目标检测的软件V1.0. (软件著作权登记号: 2020SR0751027)