Introduction

    空天装备制造业对零件高强度、轻量化的设计需求导致大量难加工材料被使用,材料特性使得加工中存在效率低、浪费大、污染重等突出问题,严重制约了行业发展,限制了国防能力建设和战略性产业革新,有悖于未来制造业面向高性能、绿色化、可持续的长远目标。同时,随着对加工过程理解的不断深入,加工工艺的进一步优化和提升更加依赖于对材料变形及去除过程物理本质的理解,使得高性能加工所需的核心理论逐渐向微观尺度下的材料力学行为深化。因此,基于生产技术的新需求,依据加工对象的物理力学特性,不断挖掘新一代加工技术及其理论基础所需求的物理本质和内涵,从而实现现有加工技术的转化升级,进而指导现场的生产和工艺优化,是解决加工中面临的技术瓶颈的根本途径。

 

    围绕新材料加工中的新挑战、新需求,以数值建模技术为核心,实现切削加工中各个环节力热特性和微观过程的定量分析和主动预测。针对切削中材料的宏微力学行为,开展多尺度、多机制、多结构耦合建模方法,深挖材料变形和去除的微观物理机制,建立其与宏观力学响应的内在关联,同时,面向新型的切削技术,结合工业现场的实际工况及复杂的边界条件,开发多场耦合切削过程模拟方法,为面向实际生产的工艺设计提供理论支撑。

多尺度、多机制、多结构耦合建模

 

复杂多场耦合边界条件下的切削过程建模

Publications

  1. Li B, Liu H, Zhang J*, Xu B, Zhao W. Multi-mechanism-based twinning evolution in machined surface induced by thermal-mechanical loads with increasing cutting speeds. International Journal of Machine Tools & Manufacture, 2023, 192: 104074, https://doi.org/10.1016/j.ijmachtools.2023.104074
  2. Liu H*, Cherif M, Calamaz M, Birembaux H, Rossi F, Poulachon G, Ayed Y. Progressive damage induced degradation of mechanical properties in the hole surfaces during drilling processes of CFRP. CIRP Annals - Manufacturing Technology, 2023, 72(1): 65-68, https://doi.org/10.1016/j.cirp.2023.04.044
  3. Xu B, Liu X, Liu H, Zhang J*, Zhao W. A comparative study on modeling approaches towards laser-assisted machining [J]. Procedia CIRP, 2023, 117: 26-31. DOI: https://doi.org/10.1016/j.procir.2023.03.006
  4. Bai L, Liu H, Zhang J*, Zhao W. Real-time tool breakage monitoring based on dimensionless indicators under time-varying cutting conditions. Robotics and Computer-Integrated Manufacturing, 2023, 81: 102502. https://doi.org/10.1016/j.rcim.2022.102502
  5. Xu B, Zhang J*, Liu X, Liu H, Zhao W. Fully coupled thermomechanical simulation of laser-assisted machining Ti6Al4V reveals the mechanism of morphological evolution during serrated chip formation. Journal of Materials Processing Technology, 2023, 315: 117925. https://doi.org/10.1016/j.jmatprotec.2023.117925
  6. Tang Y, Zhang J*, Tian H, Liu H, Zhao W. Optimization method of spindle speed with the consideration of chatter and forced vibration for five-axis flank milling. The International Journal of Advanced Manufacturing Technology, 2023, 125: 3159–3169. https://doi.org/10.1007/s00170-023-10894-4
  7. Tang Y, Zhang J*, Hu W, Liu H, Zhao W. Prediction of Surface Location Error Considering the Varying Dynamics of Thin-Walled Parts during Five-Axis Flank Milling. Processes. 2023, 11(1): 242. https://doi.org/10.3390/pr11010242
  8. Liu H*, Birembaux H, Ayed Y, Rossi F, Poulachon G*. Recent advances on cryogenic assistance in drilling operation: A critical review. Journal of Manufacturing Science and Engineering – Transactions of the ASME, 2022, 144(10): 100801. DOI: https://doi.org/10.1115/1.4054518
  9. Liu H, Xu X, Zhang J*, Liu Z, He Y, Zhao W, Liu Z. The state of the art for numerical simulations of the effect of the microstructure and its evolution in the metal-cutting processes [J]. International Journal of Machine Tools & Manufacture, 2022, 177: 103890. DOI: https://doi.org/10.1016/j.ijmachtools.2022.103890
  10. Liu H*, Ayed Y, Birembaux H, Rossi F, Poulachon G. Impacts of flank wear and cooling strategies on evolutions of built-up edges, diffusion wear and cutting forces in Ti6Al4V machining [J]. Tribology International, 2022, 171: 107537. DOI: https://doi.org/10.1016/j.triboint.2022.107537
  11. Tang Y, Zhang J*, Zhang H, Zhao W, Liu H. Generalized equivalent method for dynamics of multipocket thin-walled parts [J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(3): 2731–2745. DOI: https://doi.org/10.1007/s00170-022-08961-3
  12. Liu H*, Birembaux H, Ayed Y, Rossi F, Poulachon G. A hybrid modelling approach for characterizing hole shrinkage mechanisms in drilling Ti6Al4V under dry and cryogenic conditions [J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(11): 3849-3868. DOI: https://doi.org/10.1007/s00170-021-08229-2
  13. Liu H, Xiao Y, Zhang J*, Xu X, Liu Z, Zhao W. Dynamic stress propagation induced transition of stress state and microstructure characteristics during high-speed cutting of OFHC copper [J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(7): 2365-2378. DOI: https://doi-org/10.1007/s00170-021-07292-z
  14. Liu H, Shin YC*. A crystal plasticity finite element-based approach to model the constitutive behavior of multi-phase steels [J]. Archives of Civil and Mechanical Engineering, 2021, 21(2): 1-14. DOI: https://doi.org/10.1007/s43452-021-00226-2
  15. Liu H, Zhang J*, Xu B, Zhang H, Zhao W. Whole process analysis of microstructure evolution during chip formation of high-speed machining OFHC copper [J]. Journal of Manufacturing Processes, 2021, 66: 470-482. DOI: https://doi.org/10.1016/j.jmapro.2021.04.038
  16. Zhang J*, Liu Z, Liu H, Xu X, Outeiro J, Zhao W. Fragmented chip formation mechanism in high-speed cutting from the perspective of stress wave effect [J]. CIRP Annals – Manufacturing Technology, 2021, 70(1): 53-56. DOI: https://doi.org/10.1016/j.cirp.2021.03.016
  17. Xu B, Zhang J*, Liu H, Xu X, Zhao W. Serrated Chip Formation Induced Periodic Distribution of Morphological and Physical Characteristics in Machined Surface During High Speed Machining of Ti6Al4V [J]. Journal of Manufacturing Science and Engineering – Transactions of the ASME, 2021, 143(10): 101006. DOI: https://doi.org/10.1115/1.4050760
  18. Liu H, Zhang J*, Xu B, Xu X, Zhao W. Prediction of microstructure gradient distribution in machined surface induced by high speed machining through a coupled FE and CA approach [J]. Materials & Design, 2020, 196: 109133. DOI: https://doi.org/10.1016/j.matdes.2020.109133
  19. Zhang J*, Xu X, Outeiro J, Liu H, Zhao W. Simulation of grain refinement induced by high-speed machining of OFHC copper using cellular automata method [J]. Journal of Manufacturing Science and Engineering – Transactions of the ASME, 2020, 142(9): 091006. DOI: https://doi.org/10.1115/1.4047431
  20. Liu H, Zhang J*, Xu X, He Y, Liu Z, Zhao W. Numerical study on stress wave induced dislocation density evolution during high-speed machining [C]. High Speed Machining (HSM) Conference 2019, Prague, Czech
  21. Liu H, Zhang J*, Xu X, Qi Y, Liu Z, Zhao W. Effects of Dislocation Density Evolution on Mechanical Behavior of OFHC Copper during High-Speed Machining [J]. Materials, 2019, 12(15): 2348. DOI: https://doi.org/10.3390/ma12152348
  22. Xu X, Zhang J*, Liu H, He Y, Zhao W. Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V [J]. Materials Science and Engineering: A, 2019, 752: 167-179. DOI: https://doi.org/10.1016/j.msea.2019.03.011
  23. Xu X, Zhang J*, Liu H, Qi Y, Liu Z, Zhao W. Effect of morphological evolution of serrated chips on surface formation during high speed cutting Ti6Al4V [J]. Procedia CIRP, 2018, 77: 147-150. DOI: https://doi.org/10.1016/j.procir.2018.08.262
  24. Liu H, Zhang J*, Xu X, Zhao W. Experimental study on fracture mechanism transformation in chip segmentation of Ti-6Al-4V alloys during high-speed machining [J]. Journal of Materials Processing Technology, 2018, 257: 132-140. DOI: https://doi.org/10.1016/j.jmatprotec.2018.02.040
  25. Jiang Y, Zhang J*, He Y, Liu H, Memon A, Zhao W. Discrete Element Simulation of the Stress Wave in High Speed Milling [C] // International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2017, 50725: V001T02A033. DOI: https://doi.org/10.1115/MSEC2017-2906
  26. He Y, Zhang J*, Qi Y, Liu H, Memon A, Zhao W. Numerical study of microstructural effects on chip formation in high speed cutting of ductile iron with discrete element method [J]. Journal of Materials Processing Technology, 2017, 249: 291-301. DOI: https://doi.org/10.1016/j.jmatprotec.2017.06.006
  27. Liu H, Zhang J*, Xu X, Jiang Y, He Y, Zhao W. Effect of microstructure evolution on chip formation and fracture during high-speed cutting of single phase metals [J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4): 823-833. DOI: https://doi.org/10.1007/s00170-016-9823-6
  28. Jiang Y, Zhang J*, He Y, Liu H, Zhao W. Nonlinear propagation of stress waves during high speed cutting [J]. Applied Physics Letters, 2016, 109(19): 191904. DOI: https://doi.org/10.1063/1.4967514
  29. Liu H, Zhang J*, Jiang Y, He Y, Xu X, Zhao W. Investigation on morphological evolution of chips for Ti6Al4V alloys with the increasing milling speed [J]. Procedia CIRP, 2016, 46: 408-411. DOI: https://doi.org/10.1016/j.procir.2016.03.127
  30. He Y, Zhang J*, Jiang Y, Liu H, Zhao W. Discrete element simulation of machining cracks in brittle materials during high speed cutting [C] // Materials Science Forum. Trans Tech Publications Ltd, 2016, 836: 117-125. DOI: https://doi.org/10.4028/www.scientific.net/MSF.836-837.117