Blank

2024

​​​​​​​

[1] Guo T, He C, Liang Z*, et al. Molecular dynamics study on the initial oxidation behavior of FeCr alloys in supercritical H2O and supercritical CO2 with O2[J]. The Journal of Supercritical Fluids, 2024, 204: 106110.

[2] Ma W, Liang Z*, Zhao Q, et al. Selective recovery of Li2CO3 from single or mixed cathode materials of LIBs using carbonation leaching technology with minor acid[J]. Journal of Energy Storage, 2024.

[3] Liu Y, Zhang X, Ma W, Liang Z*. Research on the recycling of waste lithium battery electrode materials using ammonium sulfate roasting[J]. Materials Chemistry and Physics, 2024: 129221.

[4] Ma W, Liang Z*, Zhang X, et al. Selective recovery of battery-grade Li2CO3 from spent NCM cathode materials using a one-step method of CO2 carbonation recovery without acids or bases[J]. Chemsuschem, 2024: e202400459-e202400459.

[5] Guo T, Liang Z*, Zhao Q, A novel design method for NiCr coating against supercritical CO2 via the ReaxFF molecular dynamics theoretical analysis and experimental verification, The Journal of Supercritical Fluids, 2024, 106315.

[6] 陈彦泽,梁志远*,赵钦新. 长期服役铁素体耐热钢变负荷工况下蒸汽氧化行为研究[J]. 中国电机工程学报, 2024. 

[7] 何闯,梁志远*,赵钦新. 具有扰流结构的风冷型锂电池包热管理系统性能的优化[J]. 郑州大学学报, 2024. 

 

2023

 

[1] Gui Y, Liang Z*, Wang S, Zhao Q*. Corrosion behavior of T91 tubing in high temperature supercritical carbon dioxide environment[J]. Corrosion Science, 2023 ,211, 110857.

[2] Guo T, Liang Z*, Zhao Q. Characterization and simulation studies on the corrosion products of HR230 and 740 H alloys in CO2 with 7% H2O environment at 1000 ℃[J]. Corrosion Science, 2023, 214,111009.

[3] Wu H, Wang S, Zhao Q, Liang Z*. High-temperature corrosion data and mechanisms for T122, Super304H and HR3C after 15 years in 1000MW ultra-supercritical power plant[J]. Materials at High Temperatures, 2023, 40(1), 88-98.

[4] Ma W, M Liu, X Zhang, Q Zhao, Z Liang*. An Efficient and Precipitant-Free Approach to Selectively Recover Lithium Cobalt Oxide Made for Cathode Materials Using a Microwave-Assisted Deep Eutectic Solvent [J]. Energy and Fuels, 2023, 37(1): 724–734.

[5] Z Xu, Z Liang, H Shao, Q Zhao. Heavy metal stabilization in MSWI fly ash using an additive-assisted microwave hydrothermal method [J]. Journal of Industrial and Engineering Chemistry, 2023, 117: 352-360.

[6] Guo T, Liang Z*, Q Zhao. Molecular dynamics, thermodynamics and experimental studies on the corrosion mechanism of T92 and TP347H steels in high-pressure CO2 and H2O at 600℃ [J]. Applied Surface Science, 2023​​​​​​​.

[7] Deng S, Liang Z*, Guo T, Gui Y, Zhao Q. Investigation of Enamel Coatings Failure in Desulfurization Flue Gas [J]. Engineering Failure Analysis, 2023.  

[8] 郭亭山,梁志远*,赵钦新. 超临界CO2材料腐蚀过程动力学与产物热力学研究[J]. 西安交通大学学报, 2023. 

[9] 吴浩民,梁志远*,赵钦新. 电站锅炉深度调峰超温工况下水冷壁腐蚀机理研究[J]. 西安交通大学学报, 2023. 

[10] 马文君,张旭,刘孟顺,梁志远*,赵钦新. 新兴湿法退役锂电池正极材料回收技术研究进展[J]. 化工进展, 2023. 

[11] 梁志远*,张超,曲劲宇,郭亭山,徐一鸣. 某燃气轮机燃烧室合金高温蒸汽氧化行为研究[J]. 中国腐蚀与防护学报, 2023. 

[12] Guo T, Wu H, Shao H, Liang Z*. Revealing the role of SO2 in the high-temperature corrosion diffusion of two superalloys in CO2 through molecular dynamics and thermal stability[J]. Journal of Alloys and Compounds, 2023, 948: 169746.

[13] Guo T, Cao X, Shao H, Zhao Q, Liang Z*. Effect of Fe on the oxidation, sulfidation and carburization behaviors of alloys in CO2 containing SO2[J]. Corrosion Science, 2023: 111438.

[14] Zhang X, Liang Z*, Ma W, Zhao Q. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review [J]. Journal of Energy Storage, 2023.

​​​​​​​

 

 

2022

 

[1] Gui Y, Zhao Q, Wang S, Liang Z*. Effect of shot-peening on corrosion behavior of austenitic steel in supercritical carbon dioxide at 700° C[J]. Corrosion Science, 2022: 110180. 
[2] Guo T, Xu Y, Liu S, Liang Z*, Zhao Q. Characteristics of the corrosion products on three scratched heat-resisting alloys in closed-loop supercritical and high-temperature CO2[J]. Corrosion Science, 2022: 110148.
[3] 徐一鸣, 刘仕杰, 王硕, 梁志远*, 赵钦新. 预氧化对高温CO2环境下典型耐热材料腐蚀行为的影响研究[J]. 西安交通大学学报, 2022(05): 1-14.

[4] Guo T, Wang M, Liang Z*, Zhao Q. High-Temperature Corrosion Behavior of T92, TP347HFG and IN625 with Surface Scratching in Carbon Dioxide at 600°C[J]. Oxidation of Metals, 2021,97:97-121.

[5] 梁志远,徐一鸣,  王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022. (DOI: 10.11902/1005.4537.2021.210)

[6] Liu M, Ma W, Zhang X, Liang Z*, Zhao Q. Recycling lithium and cobalt from LIBs using microwave-assisted deep eutectic solvent leaching technology at low-temperature [J]. Materials Chemistry and Physics, 2022,289: 124664.

[7] 王梦瑶,梁志远,桂雍,  郭亭山,邵怀爽, 赵钦新. 超临界CO2腐蚀对耐热材料力学性能影响研究进展[J]. 中国电机工程学报, 2022. 

[8] Ma W, Liang Z*. Synthesis of low-costing 4A-zeolite and stabilization of heavy metals from municipal solid waste incineration fly ash and activated red mud [J]. Asia-Pacific Journal of Chemical Engineering, 2022.

[9] Liu S, Wu H, Zhao Q, Liang Z*. Corrosion failure analysis of the heat exchanger in a hot water heating boiler [J]. Engineering Failure Analysis, 2022.

 

 

2021

 

[1] Xu Z, Shao H, Wang Y, Zhao Q, Liang Z*. Characteristics of coal tar residue treated with microwave-assisted hydrothermal treatment [J]. Fuel Processing Technology, 2021, 211: 106580.
[2] Qi J, Xu H, Liang Z, et al. The role of Cr atom in the early steam oxidation of Fe‐based alloys: An atomistic simulation [J]. Materials and Corrosion, 2021, 72(3): 465-473.
[3] Xu Z, Shao H, Zhao Q, Liang Z*. Use of Microwave-Assisted Deep Eutectic Solvents to Recycle Lithium Manganese Oxide from Li-Ion Batteries[J]. JOM, 2021, 73: 2104–2110
[4] Liang Z, Guo T, Zhao Q. Corrosion Behavior of Titanium Alloy Ti6Al4V in Supercritical Carbon Dioxide at 600° C[J]. JOM, 2021, 73(12): 3959-3964.
[5] Ma H, Wang Y, Liang Z, et al. Investigation on High Temperature Corrosion Characteristic of Super304H, TP347H, and HR3C Steel in an Ultra‐supercritical Coal‐fired Boiler [J]. Fuel Cells, 2021, 21(1): 24-30.
[6] 梁志远, 桂雍, 赵钦新. 超临界 CO2 动力循环高温材料腐蚀研究进展[J]. 动力工程学报, 41(11): 910-917.
[7] 郭亭山, 梁志远*, 桂雍, 赵钦新. 超临界CO2环境下Fe-22Cr-25Ni奥氏体耐热钢的腐蚀行为研究[J]. 核动力工程, 2021, 42(06): 93-99.
[8] 桂雍, 梁志远*, 郭亭山, 王梦瑶, 赵钦新, 王硕.超临界二氧化碳环境中耐热材料的腐蚀行为研究[J]. 动力工程学报, 2021, 41(07): 602-608.
[9] 郭亭山, 梁志远*, 王鹏, 赵钦新.高温CO2环境下表面划痕对耐热钢T92、TP347H和TP347HFG腐蚀行为的影响[J]. 西安交通大学学报, 2021, 55(09): 121-132.
[10] 郭亭山, 赵永福, 梁志远*, 赵钦新. 压水堆核电站二回路水化学处理用碱化剂研究进展[J]. 热力发电, 2021, 50(05): 1-9.
[11] 赵钦新, 王云刚, 梁志远, 邵怀爽. 工业锅炉行业应对变局的创新思维和实践[J]. 工业锅炉, 2021(01): 1-14.

 

2020

 

 

2019


[35] Liang Zhiyuan, Zhao Qinxin. High temperature oxidation of Fe–Ni-base alloy HR120 and Ni-base alloy HAYNES 282 in steam[J]. Materials at High Temperatures, 2019, 36(1): 87-96.(SCI检索)

 

2018


[34] 徐洪,梁志远*,孙和泰,杨贤彪. 奥氏体耐热钢表面氧化物再生长及剥落行为研究[J]. 热能动力工程,2018,33(11):93-101. 
[33] Pan Peiyuan, Chen Heng, Liang Zhiyuan, Zhao Qinxin. Desulfurized flue gas corrosion coupled with deposits in a heating boiler[J]. Corrosion Science, 2018, 131:  126-136.(SCI检索)
[32] Chen Xiaolu, Liang Zhiyuan*, Yang Wenjun, Zhao Qinxin. Investigation into the Ash Deposits in a Coal-Fired Traveling Grate Boiler with  Ammonia Present in the Flue Gas[J]. Energy & Fuels, 2018, 32(11): 11328-11334.(SCI检索)
[31] Chen Lei, Yang Wenjun, Wang Yungang, Liang Zhiyuan et al. Investigation on the NO removal from simulated flue gas by using H2O2 vapor over Fe2 (MoO4) 3[J]. Energy & fuels, 2018, 32(8): 8605-8613.(SCI检索)
[30] Liang Zhiyuan, Yu Miao, Xu Zhiwen, et al. Influence of Low-Temperature Pre-oxidation by Ozone on Corrosion Resistance of T91 Steel in Steam at 600° C[J]. Oxidation of Metals, 2018. (SCI检索)
[29] Liang Zhiyuan, Yu Miao, Gui Yong, et al. Corrosion behavior of heat-resistant materials in the high-temperature carbon dioxide environment[J]. JOM, 2018. (SCI检索)
[28] Hong Xu, Zhiyuan Liang*, Jianliang Deng, et al. Effect of Pre-Oxidation on the Steam Oxidation of Heat-Resistant Steel T92[J]. High Temperature Materials and Processes. (SCI检索)
[27] Shao Huaishuang, Zhao Qinxin, Liang Zhiyuan, et al. Numerical investigation on a separated structure shell-and-tube waste heat boiler based on experiment[J]. International Journal of Heat and Mass Transfer, 2018, 117: 1006-1018. (SCI检索)
[26] Pan Peiyuan, Chen Heng, Liang Zhiyuan, et al. Deposition and corrosion characteristics of liquid-solid droplets on tubular corrosion probes in desulfurized flue gas[J]. Engineering Failure Analysis, 2018, 90: 129-140. (SCI检索)
[25] Liang Zhiyuan, Zhao Qinixn, Deng Jianguo, et al. Influence of Aging treatment on the microstructure and mechanical properties of T92/Super 304H dissimilar metal welds[J]. Materials at High Temperatures, 2018, 35 (4): 327-334. (SCI检索)
[24] Chen Lei, Xu Zhiwen, He Chi, Liang Zhiyuan*, et al. Gas-phase total oxidation of nitric oxide using hydrogen peroxide vapor over Pt/TiO2[J]. Applied Surface Science, 2018, 457: 821-830.(SCI检索)
[23] Liang Zhiyuan, Wang Yungang, Zhao Qinxin. Steam oxidation behavior of alloy 617 at 900°C to 1100°C[J]. Metallurgical and Materials Transactions A, 2018, 49(7): 3133–3144. (SCI检索)
[22] Liang Zhiyuan, Gui Yong, Zhao Qinxin. INVESTIGATION OF MICROSTRUCTURES AND MECHANICAL PROPERTIES OF T92 MARTENSITIC STEEL/SUPER304 AUSTENITIC STEEL WELD JOINTS MADE WITH THREE WELDING CONSUMABLES [J]. Arch. Metall. Mater, 2018, 63(3), 1249-1256.  (SCI检索)
[21] 于淼,梁志远*,桂雍等. 4种先进超超临界电站锅炉用高温合金高温腐蚀性能实验研究[J].表面技术,2018,47(6):8-16. (EI检索)
[20] 梁志远,于淼,桂雍,赵钦新. 高温二氧化碳环境下耐热合金腐蚀行为研究[J]. 腐蚀科学与防护技术,2018,30(3),237-243.
 
2017


[19] Pan Peiyuan, Chen Heng, Liang Zhiyuan, et al. Experimental study on corrosion of steels for flue gas reheaters in a coal-fired power plant[J]. Applied Thermal Engineering, 2017, 115: 267-279. (SCI检索)
[18] Chen Xiaolu, Zhao Qinxin, Liang Zhiyuan. Investigations on the Ash Deposit Formation of Tubular Air Preheater in a Coal-Fired Traveling Grate Boiler[J]. Energy & Fuels, 2017, 31(12): 13215-13220. (SCI检索)
[17] Chen Lei, Li Yuxin, Zhao Qinxin, Liang Zhiyuan, et al. Removal of NOX Using Hydrogen Peroxide Vapor over Fe/TiO2 Catalysts and an Absorption Technique[J]. Catalysts, 2017, 7(12): 386. (SCI检索)

 

2016以前

 

[16] Liang Zhiyuan, Singh P M, Zhao Q, et al. High Temperature Oxidation of Newly Developed Alloy 282 in the Flowing-Air and Steam Condition at 900–1100° C[J]. Oxidation of Metals, 2015, 84(3-4): 291-305. (SCI检索)
[15] Liang Zhiyuan, Zhao Q, Singh P M, et al. Field studies of steam oxidation behavior of austenitic heat-resistant steel 10Cr18Ni9Cu3NbN[J]. Engineering Failure Analysis, 2015, 53: 132-137. (SCI检索)
[14] Liang Zhiyuan, Zhao Qinxin,Wang Yungang, et al. Coupling mechanism of dew point corrosion and viscous ash deposits. Materials and Corrosion-werkstoffe Und Korrosion, 2014, 65(8):797-802. (SCI检索) 
[13] Liang Zhiyuan, Jin Xin, Zhao Qinxin. Investigation of overheating of the final super-heater in a 660MW power plant[J]. Engineering Failure Analysis, 2014, 45: 59-64. (SCI检索)
[12] Liang Zhiyuan, Sha Wanhua, Zhao Qinxin, et al. The Effect of Aging Heat Treatment on the Microstructure and Mechanical Properties of 10Cr20Ni25Mo1. 5NbN Austenitic Steel[J]. High Temperature Materials and Processes, 2016, 35(1): 1-7. (SCI检索)
[11] Liang Zhiyuan, Zhao Qinxin. Failure analysis of spiral finned tube on the economizer. Engineering Failure Analysis, 2013, 28:208-214. (SCI检索)
[10] Sha Wanhua, Liang Zhiyuan, Zhao Q, et al. High temperature corrosion of typical positions in SUS 30432 tubing bend tested in simulated environment[J]. Materials at High Temperatures, 2015, 32(4): 419-425. (SCI检索)
[9] Deng Jianguo, Liang Zhiyuan, Hui S, et al. Aging Treatment on the Microstructures and Mechanical Properties of New Groove T92/Super 304H Dissimilar Steel Joints[J]. High Temperature Materials and Processes, 2015, 34(5): 425-433. (SCI检索)
[8] Wang Yungang, Zhao Qinixn, Liang Zhiyuan, et al. Analysis on high-temperature corrosion characteristic of 10Cr18Ni9NbCu3BN steel[J]. Materials Research Innovations, 2015, 19: 104-108. (SCI检索)
[7] Wang Yungang, Ma Haidong, Liang Zhiyuan, et al. Experimental study on dew point corrosion characteristics of the heating surface in a 65 t/h biomass-fired circulating fluidized bed boiler[J]. Applied Thermal Engineering, 2016, 96: 76-82. (SCI检索)
[6] Zhao Qinxin, Liang Zhiyuan, Jiang W. Studies on High Temperature Corrosion of Austenitic Heat‐Resistant Steels Super 304H/10Cr18Ni9Cu3NbN in Simulated and Real Combustion Gas Atmospheres[J]. Energy Materials 2014, 243-250. (EI检索)
[5] Liang Zhiyuan, Zhao Qinxin. Research on Dew Point Corrosion of Materials[J]. Applied Mechanics and Materials. 2013, 281: 441-447. (EI检索)
[4] Liang Zhiyuan, Zhao Qinxin, Singh PM,High temperature oxidation of several austenitic steels and nickel-based super-alloys in steam environment [C]. 8th International Conference on Advances in Materials Technology for Fossil Power Plants, 2016, Portugal. (EI检索)
[3] Liang Zhiyuan, Singh Preet, Zhao Qinxin, Effect of pre-oxdiation on the steam oxidation of T92 steel at 650℃[C], NACE 2015, 2015, Dallas.
[2] Liang Zhiyuan, Zhao Qinxin, Singh PM, Oxidation of Fe-Ni-base alloy HR120 and Ni-base alloy 282 in Steam Environment at 800℃ to 1000℃[C], NACE 2016, 2016, Vancouver.
[1] 梁志远,赵钦新,张智超等.表面渗层和CrNiMo涂层材料的露点腐蚀[J].中国表面工程,2012,25(5):56-61