主持的科研项目

1.    2025.1 ~ 2026.12,  国家自然科学基金原创探索计划项目(延续),融合视觉感知准则与内在机理的示意图深度理解方法(62450005)
2.    2023.7 ~ 2025.06,  陕西省重点研发计划项目,虚实融合的智能教学环境构建技术及示范应用(2023GXLH-023)
3.    2023.1 ~ 2027.12,  国家自然科学基金重大项目课题,跨媒体教学资源理解与个性化导学方法研究(62293553)
4.    2023.1 ~ 2023.12,  国家自然科学基金原创探索计划项目,视觉感知准则引导的示意图理解方法(62250066)
5.    2023.1 ~ 2024.10,  西安交通大学2022年本科教学改革研究项目(重点项目),基于采集式学习的实践教学模式探索
6.    2022.1 ~ 2025.12,  国家自然科学基金项目,一阶逻辑公式的表征学习与可微推理关键技术研究(62176207)
7.    2020.1 ~ 2020.10,  联想横向课题,基于知识森林的教与学系统
8.    2020.1 ~ 2020.12,  弘成科技合作协同育人项目,数据挖掘
9.    2018.5 ~ 2021.4,    国家重点研发计划“云计算和大数据”重点专项,教育大数据分析挖掘技术及其智慧教育示范应用(2018YFB1004500)
10.  2018.1 ~ 2018.12,  Intel公司产学合作协同育人项目,自然语言理解与机器翻译
11.  2018.1 ~ 2019.12,  西安交通大学2017年在线教学改革研究专项项目,基于知识森林的碎片化知识组织与导航学习新模式
12.  2017.1 ~ 2020.12,  国家自然科学基金项目,面向开放知识源的知识碎片分面聚合方法研究(61672419)
13.  2016.1 ~ 2017.12,  教育部在线教育研究基金课题,基于大数据挖掘和分析的学习者学习路径优化研究
14.  2016.1 ~ 2020.12,  国家自然科学基金重点项目(子项目),大规模在线协同学习的机理与方法研究(61532004)
15.  2014.1 ~ 2016.12,  西安交通大学青年教师跟踪支持项目,知识地图导航学习理论与方法
16.  2012.1 ~ 2014.12,  国家“863”计划子课题,海量web数据内容管理、分析挖掘技术与大型示范应用(2012AA011003)
17.  2011.1 ~ 2014.12,  国家自然科学基金项目,知识地图的拓扑与演化特性研究及在e-Learning中的应用(61173112)
18.  2010.1 ~ 2011.12,  教育部专项课题,基于知识元的科技论文检索方法研究与应用
19.  2010.1 ~ 2012.12,  “核高基”国家科技重大专项分课题,基于国产基础软件的数字教育关键技术攻关及示范应用(2010ZX01045-001-005-2)
20.  2009.1 ~ 2011.12,  国家自然科学基金项目,面向特定领域文本的知识元及其关联挖掘方法研究(60803079)
21.  2009.1 ~ 2011.12,  教育部“新世纪优秀人才支持计划”项目,面向非结构文本的知识元关联挖掘方法研究(NCET-08-0433)
22.  2008.7 ~ 2010.6,    国家“863”计划目标导向课题,面向教育的海量知识资源组织、管理与服务系统(2008AA01Z131)
23.  2007.1 ~ 2009.12,  国家科技支撑计划子课题,村镇教育资源远程服务关键技术研究(2006BAJ07B06-2)
24.  2005.1 ~ 2007.12,  陕西省自然科学基金项目,面向非结构文本的领域知识获取及可计算化研究
25.  2002.1 ~ 2003.12,  教育部“行动计划”中央财政专项,计算机教学管理(CMI)示范系统

奖励

1.   2022年度陕西省自然科学一等奖:大数据知识工程理论、方法及重大应用(第6贡献人)

2.   2022年国家教学成果二等奖建基地 创模式 搭平台 聚资源,打造“一带一路”工程科技人才培养新体系(第4贡献人)

3.   2020年中国自动化学会科技进步特等奖:知识森林个性化智能导学技术及其重大应用(第3贡献人)

4.   2018年陕西省技术发明一等奖:场景感知的知识地图导航移动学习关键技术及其应用(第2贡献人)

5.   2017年国家科技进步奖二等奖:税务大数据计算与服务关键技术及其应用(第7贡献人)

6.   2013年中国电子学会科技进步一等奖:国家电子税务大数据分析关键技术及其应用(第4贡献人)

7.   2012年湖北省科技进步三等奖:村镇教育资源配置与远程 服务关键技术及应用(第2贡献人)

8.   2009年国家教学成果二等奖:开放式数字教学资源共享模式探索、平台研究与应用实践(第3贡献人)

9.   2006年国家科技进步奖二等奖:天地网远程教育关键技术、系列产品及其应用(第3贡献人)

10. 2003年陕西省科技进步一等奖:基于IP网的远程教学系统(第2贡献人)

代表论文

2025:

     Conference Papers

  • Jie Ma, Zhitao Gao, Qi Chai, Wangchun Sun, Pinghui Wang, Hongbin Pei, Jing Tao, Lingyun Song, Jun Liu, Chen Zhang, Lizhen Cui. Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models. AAAI 2025.
  • Muye Huang, Han Lai, Xinyu Zhang, Wenjun Wu, Jie Ma, Lingliing Zhang, Jun Liu. EvoChart: A Benchmark and a Self-Training Approach Towards Real-World Chart UnderstandingAAAI 2025.
  • Muye Huang, Lingling Zhang, Han Lai, Wenjun Wu, Xinyu Zhang, Jun Liu. VProChart: Answering Chart Question through Visual Perception Alignment Agent and Programmatic Solution ReasoningAAAI 2025.
  • Yaxian Wang, Henghui Ding, Shuting He, Xudong Jiang, Bifan Wei, Jun Liu. Hierarchical Alignment-enhanced Adaptive Grounding Network for Generalized Referring Expression ComprehensionAAAI 2025.

2024:

       Journal  Papers

  • Lingling Zhang, Yujie Zhong, Qinghua Zheng, Jun Liu, Qianying Wang, Jiaxin Wang, Xiaojun Chang. TDGI: Translation-Guided Double-Graph Inference for Document-Level Relation ExtractionIEEE TPAMI, 2024, Accepted
  • Shaowei Wang, Lingling Zhang, Wenjun Wu, Tao Qin, Xinyu Zhang, Jun Liu. Alignment-guided Self-supervised Learning for Diagram Question Answerin. IEEE TMM, 2024, Accepted.
  • Bo Li, Lingling Zhang, Jun Liu, Hong Peng. Multi-focus image fusion with parameter adaptive dual channel dynamic threshold neural P systems. Neural Networks. Neural Networks, 2024, Accepted.
  • Song Lingyun, Shang Xuequn, Zhou Ruizhi, Liu Jun, Ma Jie, Li Zhanhuai, Sun Mingxuan. A Multi-Group Multi-Stream Attribute Attention Network for Fine-Grained Zero-Shot Learning.  Neural Networks, 2024, Accepted.
  • Lingling Zhang, Yifei Li, Qianying Wang, Yun Wang, Hang Yan, Jiaxin Wang, and Jun Liu. FPrompt-PLM: Flexible-Prompt on Pretrained Language Model for Continual Few-Shot Relation ExtractionIEEE TKDE, 2024, Accepted.
  • Hongwei Zeng, Bifan Wei, Jun Liu. RTRL: Relation-aware Transformer with Reinforcement Learning for Deep Question Generation. Knowledge-Based Systems, 2024, Accepted.
  • Mengyue Liu, Jun Liu, Yixiang Dong, Rui Mao, Erik Cambria. Interest-Driven Community Detection on Attributed Heterogeneous Information Networks. Information Fusion, 2024, Accepted
  • Xinyu Zhang, Lingling Zhang, Xin Hu, Jun Liu, Shaowei Wang and Qianying Wang. Alignment Relation is What You Need for Diagram Parsing. IEEE  TIP, 2024, Accepted.
  • Jie Ma, Pinghui Wang, Dechen Kong, Zewei Wang, Jun Liu, Hongbin Pei, Junzhou Zhao. Robust Visual Question Answering: Datasets, Methods, and Future Challenges, IEEE TPAMI, 2024, Accepted.
  • Yudai Pan, Jun Liu, Tianzhe Zhao, Lingling Zhang, QianyingWang. Context-Aware Commonsense Knowledge Graph Reasoning with Path-Guided Explanations, IEEE TKDE, 2024, Accepted.
  • Bin Shang, Yinliang Zhao, Jun Liu. Knowledge graph representation learning with relation-guided aggregation and interaction, Information Processing & Management, 2024, 61(4), 103752.
  • Shaowei Wang, Lingling Zhang, Tao Qin, Jun Liu, Yifei Li, Qianying Wang, Qinghua Zheng. Multi-View Cognition with Path Search for One-Shot Part Labeling, Computer Vision and Image Understanding (CVIU), 2024, Accepted.
  • Dailusi Ma, Haiping Zhu, Siji Liao, Yan Chen, Jun Liu, Feng Tian, Ping Chen. Learning path recommendation with multi-behavior user modeling and cascading deep Q networks. Knowledge-Based Systems, 2024, 294, 11743
  • Bin Shang, Yinliang Zhao, Jun Liu. Learnable Convolutional Attention Network for Knowledge Graph Completion. Knowledge-Based Systems, 2024, Accepted.

     Conference Papers

  • Jie Ma, Min Hu, Pinghui Wang, Wangchun Sun, Lingyun Song, Hongbin Pei, Jun Liu, Youtian Du. Look, Listen, and Answer: Overcoming Biases for Audio-Visual Question Answering. NeurIPS, 2024.
  • Weiping Fu, Bifan Wei, Jianxiang Hu, Zhongmin Kai, Jun Liu. QGEval: Benchmarking Multi-dimensional Evaluation for Question Generation. EMMLP 2024.
  • Jiaxin Wang, Lingling Zhang, Wee Sun Lee, Yujie Zhong, Liwei Kang, Jun Liu. When Phrases Meet Probabilities: Enabling Open Relation Extraction with Cooperating Large Language Models. ACL 2024.
  • Fangzhi Xu, Qika Lin, Tianzhe Zhao, JiaweiHan, Jun Liu. PathReasoner: Modeling Reasoning Path with Equivalent Extension for Logical Question Answering. ACL 2024.
  • Fangzhi Xu, Zhiyong Wu, Qiushi Sun, Siyu Ren, Fei Yuan, Shuai Yuan, Qika Lin, Yu Qiao, Jun Liu. Symbol-LLM: Towards Foundational Symbol-centric Interface For Large Language Models. ACL 2024.
  • Tianzhe Zhao, Jiaoyan Chen, Yanchi Ru, Qika Lin, Yuxia Geng and Jun Liu. Untargeted Adversarial Attack on Knowledge Graph Embeddings. SIGIR 2024.
  • Wenjun Wu, Lingling Zhang, Jun Liu, Xi Tang, Yaxian Wang, Shaowei Wang, QianYing Wang.  E-GPS: Explainable Geometry Problem Solving via Top-Down Solver and Bottom-Up Generator. CVPR 2024.
  • Shaowei Wang, Lingling Zhang, Longji Zhu, Tao Qin, Kim-Hui Yap, Xinyu Zhang, Jun Liu. CoG-DQA: Chain-of-Guiding Learning with Large Language Models for Diagram Question Answering. CVPR 2024.
  • Jian Zhang, Changlin Yang, Haiping Zhu, Qika Lin, Fangzhi Xu and Jun Liu. A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction. COLING 2024.
  • Yudai Pan, Jun Liu, Tianzhe Zhao, Lingling Zhang, Yun Lin, Jinsong Dong. A Symbolic Rule Integration Framework with Logic Transformer for Inductive Relation Prediction. WWW 2024.
  • Bin Shang, Yinliang Zhao, Jun Liu, Di Wang. Mixed Geometry Message and Trainable Convolutional Attention Network for Knowledge Graph Completion. AAAI 2024.
  • Bin Shang, Yinliang Zhao, Jun Liu, Di Wang. LAFA: Multimodal Knowledge Graph Completion with Link Aware Fusion and Aggregation. AAAI 2024.

2023:

       Journal  Papers

  • Jie Ma, Jun Liu, Qi Chai, Pinghui Wang, Jing Tao. Diagram Perception Networks for Textbook Question Answering via Joint Optimization, IJCV, 2023, Accepted.
  • Fangzhi Xu, Jun Liu, Qika Lin, Tianzhe Zhao, Jian Zhang, Lingling Zhang. Mind Reasoning Manners: Enhancing Type Perception for Generalized Zero-shot Logical Reasoning over Text, IEEE TNNLS, 2023, Accepted.
  • Changyu Wang, Pinghui Wang, Tao Qin, Chenxu Wang, Suhansanu Kumar, Xiaohong Guan, Jun Liu, and Kevin Chen-ChuanChang. SocialSift: Target Query Discovery on Online Social Media With Deep Reinforcement Learning, IEEE TNNLS, 2023.
  • Yaxian Wang, Bifan Wei, Jun Liu, Lingling Zhang, Jiaxin Wang, Qianying Wang, DisAVR: Disentangled Adaptive Visual Reasoning Network for Diagram Question Answering, IEEE TIP, 2023, Accepted.
  • Jie Ma, Qi Chai, Jun Liu, Qingyu Yin, Pinghui Wang, Qinghua Zheng. XTQA: Span-Level Explanations for Textbook Question Answering, IEEE TNNLS, 2023, Accepted.
  • Yudai Pan, Jun Liu, Lingling Zhang, Yi Huang. Incorporating logic rules with textual representations for interpretable knowledge graph reasoning, Knowledge-Based Systems, 2023, Accepted.
  • Fangzhi Xu, Qika Lin, Jun Liu, Lingling Zhang, Tianzhe Zhao, Qi Chai, Yudai Pan, Yi Huang, Qianying Wang. MoCA: Incorporating Domain Pretraining and Cross Attention for Textbook Question Answering, Pattern Recognition, 2023(140): 109588.
  • Yaxian Wang, Jun Liu, Ma Jie, Hongwei Zeng, Lingling Zhang, Junjun Li. Dynamic Dual Graph Networks for Textbook Question Answering, Pattern Recognition, 2023, Accepted.
  • Lingling Zhang, Xinyu Zhang, Qianying Wang, Wenjun Wu, Xiaojun Chang, Jun Liu. RPMG-FSS: Robust Prior Mask Guided Few-Shot Semantic Segmentation, IEEE TCSVT, 2023, Accepted.
  • 郑庆华, 刘欢, 龚铁梁, 张玲玲, 刘均. 大数据知识工程发展现状与未来展望, 中国工程科学, 2023, 已录用.
  • Bin Shang, Yinliang Zhao, Jun Liu, Yifan Liu, Chenxin Wang. A Contrastive Knowledge Graph Completion Model with Hierarchical Attention and Dynamic Completion, Neural Computing and Applications, 2023, Accepted.
  • Lingyun Song, Mengting He, Xuequn Shang, Chen Yang, Jun Liu, Mengzhen Yu, Yu Lu. A Deep Cross-modal Neural Cognitive Diagnosis Framework for Modeling Student Performance, Expert Systems With Applications, 2023, Accepted.

     Conference Papers

  • Yuecheng Rong, Juntao Yao, Jun Liu, Yifan Fang, Wei Luo, Hao Liu, Jie Ma, Zepeng Dan, Jinzhu Lin, Zhi Wu, Yan Zhang, Chuanming Zhang. GBTTE: Graph Attention Network Based Bus Travel Time Estimation. CIKM 2023
  • Mengyue Liu, Yun Lin, Jun Liu, Bohao Liu, Qinghua Zheng, Jin Song Dong. B2-Sampling: Fusing Balanced and Biased Sampling for Graph Contrastive Learning,  KDD 2023.
  • Bin Shang, Yinliang Zhao, Di Wang, Jun Liu. Relation-Aware Multi-Positive Contrastive Knowledge Graph Completion with Embedding Dimension Scaling. SIGIR 2023.
  • Xin Hu, Lingling Zhang, Jun Liu, Jinfu Fan,  Yang You, Yaqiang Wu. GPTR: Gestalt-Perception Transformer for Diagram Object Detection, AAAI 2023.
  • Xin Hu, Lingling Zhang, Jun Liu, Yang You, Yaqiang Wu. Diagram visual grounding: learning to see with gestalt-perceptual attention, IJCAI 2023.
  • Hongwei Zeng, Jun Liu, Bifan Wei and Weiping Fu. Synthesize, Prompt and Transfer: Zero-shot Conversational Question Generation with Pre-trained Language Model, ACL 2023.
  • Qika Lin, Jun Liu, Rui Mao, Fangzhi Xu and Erik Cambria. TECHS: Temporal Logical Graph Networks for Explainable Extrapolation Reasoning, ACL 2023.

2022:

       Journal  Papers

  • Yaxian Wang, Bifan Wei, Jun Liu, Qika Lin, Lingling Zhang, Yaqiang  Wu, Spatial-Semantic Collaborative Graph Network for Textbook Question Answering, IEEE TCSVT2022, Accepted.
  • Jiaxin Wang, Lingling Zhang, Jun Liu, Kunming Ma, Wenjun Wu, Xiang Zhao, Yaqiang Wu, Yi Huang. TGIN: Translation-Based Graph Inference Network for Few-Shot Relational Triplet Extraction. IEEE TNNLS, 2022, Accepted.
  • Qika Lin, Rui Mao, Jun Liu, Fangzhi Xu, Erik Cambria. Fusing Topology Contexts and Logical Rules in Language Models for Knowledge Graph Completion. Information Fusion, 2022, Accepted.
  • Yuecheng Rong, Zhimian Xu, Jun Liu, Hao Liu, Jian Ding, Xuanyu Liu, Wei Luo, Chuanming Zhang and Jiaxiang Gao, Du-Bus: A Realtime Bus Waiting Time Estimation System Based On Multi-source Data, IEEE TITS, 2022, Accepted.
  • Song Lingyun, Li Jiaoao, Liu Jun, Yang Yang, Shang Xuequn, Sun Mingxuan. Answering Knowledge-based Visual Questions via the Exploration of Question Purpose. Pattern Recognition, 2022, Accepted.
  • Lingling Zhang, Xiaojun Chang, Jun Liu, Minnan Luo, Zhihui Li, Lina Yao, and Alex Hauptmann, TN-ZSTAD: Transferable Network for Zero-Shot Temporal Activity Detection, IEEE TPAMI, 2022, Accepted.
  • Jie Ma, Qi Chai, Jingyue Huang, Jun Liu, Yang You, Qinghua Zheng, Weakly Supervised Learning for Textbook Question Answering, IEEE TIP, 2022, Accepted.
  • Jianming Zheng, Fei Cai, Jun Liu, Yanxiang Ling, and Honghui Chen, Multistructure Contrastive Learning for Event Representation, IEEE TNNLS, 2022, Accepted.
  • Lingling Zhang, Shaowei Wang, Jun Liu, Xiaojun Chang, Qika Lin, Yaqiang Wu, and Qinghua Zheng, MuL-GRN: Multi-Level Graph Relation Network for Few-Shot Node Classification,IEEE TKDE, 2022, Accepted.
  • Yanxiang Ling, Fei Cai, Jun Liu, Honghui Chen and Maarten de Rijke, Generating Relevant and Informative Questions for Open-domain Conversations, ACM TOIS, 2022, Accepted. 
  • Shaowei Wang, Linging Zhang, Xuan Luo, Yi Yang, Xin Hu, Tao Qin, Jun Liu, Computer Science Diagram Understanding with Topology Parsing, ACM TKDD, 2022, Accepted. 
  • Lingyun Song, Mengzhen Yu, Xuequn Shang, Yu Lu, Jun Liu, Ying Zhang, Zhanhuai LiA deep grouping fusion neural network for multimedia content understanding, IET Image Process, 2022, Accepted.

     Conference Papers

  • Yudai Pan, Jun Liu, Lingling Zhang, Tianzhe Zhao, Qika Lin, Xin Hu and Qianying Wang. Inductive Relation Prediction with Logical Reasoning Using Contrastive Representations. EMNLP 2022.
  • Jiaxin Wang, Lingling Zhang, Jun Liu, Liang Xi, Yujie Zhong and Yaqiang Wu. MatchPrompt: Prompt-based Open Relation Extraction with Semantic Consistency Guided Clustering. EMNLP 2022.
  • Yuecheng Rong, Jun Liu, Zhilin Xu, Jian Ding, Chuanming Zhang, Jiaxiang Gao. BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing via Multi-Task Learning. ECML-PKDD 2022.
  • Siyu Yao, Tianzhe Zhao, Fangzhi Xu, Jun Liu. Incorporating prior type information for few-shot knowledge graph completion. APWeb-WAIM 2022. (Excellent Student Paper Award)
  • Fangzhi Xu, Jun Liu, Qika Lin, Yudai Pan and Lingling Zhang. Logiformer: A Two-Branch Graph Transformer Network for Interpretable Logical Reasoning, SIGIR 2022.
  • Qika Lin, Jun Liu, Fangzhi Xu, Yudai Pan, Yifan Zhu, Lingling Zhang and Tianzhe Zhao. Incorporating Context Graph with Logical Reasoning for Inductive Relation Prediction, SIGIR 2022.

 

2021:

     Book/Book Chapter

  • 郑庆华、刘均、魏笔凡、张玲玲. 知识森林:理论、方法与实践, 科学出版社, 2021.
  • Jun Liu, Lingling Zhang, Bifan Wei, Qinghua Zheng. Virtual Teaching Assistants: Technologies, Applications and Challenges. In: Fang Chen, Jianlong Zhou (Eds.), Humanity Driven AI: Productivity, Well-being, Sustainability and Partnership, Springer, 2021.

       Journal  Papers

  • Qika Lin; Jun Liu, Lingling Zhang, Yudai Pan, Xin Hu, Fangzhi Xu, Hongwei Zeng, Contrastive Graph Representations for Logical Formulas Embedding, IEEE TKDE, 2021, Accepted.
  • 张玲玲, 陈一苇, 吴文俊, 魏笔凡, 罗炫, 常晓军, 刘均. 基于对比约束的可解释小样本学习. 计算机研究与发展, 2021, 58(12): 2573-2584.
  • 蔺奇卡, 张玲玲, 刘均,赵天哲. 基于问句感知图卷积的教育知识库问答方法. 计算机科学与探索, 2021, 15(10): 1880-1887
  • Yanxiang Ling, Fei Cai, Jun Liu, Honghui Chen, and Maarten de Rijke, Keep and Select: Improving Hierarchical Context Modeling for Multi-turn Response Generation, IEEE TNNLS, 2021, Accepted.
  • Xin Hu, Lingling Zhang, Jun Liu, Qinghua Zheng, Jianlong Zhou, Fs-DSM: Few-Shot Diagram-Sentence Matching via Cross-Modal Attention Graph Model, IEEE TIP, 2021, Accepted.
  • Jie Ma, Jun Liu, Qika Lin; Bei Wu; Yaxian Wang; Yang You. Multi-Task Learning for Visual Question Answering, IEEE TNNLS, 2021, Accepted.
  • Qika Lin, Jun Liu, Yudai Pan, Lingling Zhang, Xin Hu, Jie Ma. Rule-Enhanced Iterative Complementation for Knowledge Graph Reasoning, Information Sciences, 2021, Accepted.
  • Jie Ma, Jun Liu, Yaxian Wang, Junjun Li, and Tongliang Liu. Relation-aware Fine-grained Reasoning Network for Textbook Question Answering, IEEE TNNLS, 2021, Accepted.
  • Lingling Zhang, Shaowei Wang, Xiaojun Chang, Jun Liu, Zongyuan Ge, and Qinghua Zheng. Auto-FSL: Searching the Attribute Consistent Network for Few-Shot Learning, IEEE TCSVT, 2021, Accepted.
  • Hongwei Zeng, Zhuo Zhi, Jun Liu, Bifan Wei. Improving Paragraph-level Question Generation with Extended Answer Network and Uncertainty-aware Beam Search. Information Sciences, 2021, Accepted.
  • Hongwei Zeng, Jun Liu, Meng Wang, Bifan Wei. A Sequence to Sequence Model for Dialogue Generation with Gated Mixture of Topics. Neurocomputing, 2021, Accepted.
  • Yanxiang Ling, Fei Cai, Xuejun Hu, Jun Liu, Wanyu Chen, and Honghui Chen. Context-Controlled Topic-Aware Neural Response Generation for Open-Domain Dialog Systems. Information Processing & Management, 2021, 58(1): 102392.

     Conference Papers

  • Shaowei Wang, Lingling Zhang, Yi Yang, Xin Hu, Tao Qin, Bifan Wei, Jun Liu. CSDQA: Diagram Question Answering in Computer Science, CCKS 2021. (Best Resource Paper Award)
  • Yanzhang Lyu, Hongzhi Yin, Jun Liu, Mengyue Liu, Huan Liu, Shizhuo Deng. Reliable Recommendation with Review-level Explanations. ICDE 2021.
  • Wenjun Wu, Lingling Zhang, Yiwei Chen, Xuan Luo, Bifan Wei, and Jun Liu. Fuzzy c-Means Clustering with Discriminative Projection, ICBK 2021.
  • Hongwei Zeng, Zhenjie Hong, Jun Liu, and Bifan Wei. Multi-task Learning for Multi-turn Dialogue Generation with Topic Drift Modeling, ICBK 2021.
  • Hongxuan Li, Bifan Wei, Jun Liu, Zhaotong Guo, Jingchao Qi, Yong Liu, and Yuanyuan Shi. ToFM: Topic-specific Facet Mining by Facet Propagation within Clusters, ICBK 2021.

 

2020:

       Book/Book Chapter

  • Siyu Yao, Ruijie Wang, Shen Sun, Derui BuJun Liu. Joint Embedding Learning of Educational Knowledge Graphs. In: Pinkwart N., Liu S. (eds) Artificial Intelligence Supported Educational Technologies. Advances in Analytics for Learning and Teaching. Springer, 2020.

     Journal  Papers

  • Lingyun Song, Jun Liu, Mingxuan Sun, Xuequn Shang. Weakly Supervised Group Mask Network for Object Detection. IJCV, 2020, Accepted.
  • 麻珂欣, 魏笔凡, 马杰, 刘均, 黄毅, 胡珉, 冯俊兰. 知识主题间先序关系挖掘, 大数据, 2020, 已录用.
  • 姚思雨,  赵天哲, 王瑞杰. 刘均. 规则引导的知识图谱联合嵌入方法, 计算机研究与发展, 2020, 已录用.
  • Bei Wu; Bifan Wei, Jun Liu, Kewei Wu, Meng Wang, Faceted Text Segmentation via Multi-Task Learning, IEEE TNNLS, 2020, Accepted.
  • Xin Hu, Jun Liu, Jie Ma, Yudai Pan, Lingling Zhang, Fine-grained 3D-Attention Prototypes for Few-Shot Learning, Neural Computation, 2020, 32(9): 1664-1684.
  • Chenxu Wang, Wei Rao, Wenna Guo, Pinghui Wang, Jun Liu, Xiaohong Guan,Towards Understanding the Instability of Network Embedding, IEEE TKDE,  2020, Accepted.
  • Lingling Zhang, Xiaojun Chang, Jun Liu, Minnan Luo, Mahesh Prakash, Alexander Hauptmann, Few-Shot Activity Recognition with Cross-Modal Memory Network, Pattern Recognition, 2020, 108: 107348.
  • 范铭,  刘烃, 刘均,  罗夏朴, 于乐, 管晓宏. 安卓恶意软件检测方法综述, 中国科学: 信息科学, 2020, 50(8): 1148-1177.

     Conference Papers

  • Lingling Zhang, Xiaojun Chang, Jun Liu, Sen Wang, Zongyuan Ge, Minnan Luo, Alexander Hauptmann, ZSTAD: Zero-Shot Temporal Activity Detection, CVPR 2020.

2019:

     Journal  Papers

  • Ruijie Wang; Meng Wang; Jun Liu; Michael Cochez. Structured Query Construction via Knowledge Graph Embedding, KAIS, 2019, Accepted. 
  • Lingling Zhang, Minnan Luo, Jun Liu, Xiaojun Chang, Yi Yang, and Alexander G. Hauptmann. Deep Top-k Ranking for Image-Sentence Matching, IEEE TMM, 2019, 22(3): 775-785.
  • Lingling Zhang, Jun Liu, Minnan Luo, Xiaojun Chang, Qinghua Zheng, Alexander G. Hauptmann. Scheduled Sampling for One-Shot Learning via Matching Network, Pattern Recognition, 2019, 96: 106962.
  • Qinghua Zheng, Jun Liu, Hongwei Zeng, Zhaotong Guo, Bei Wu & Bifan Wei. Knowledge Forest: A Novel Model to Organize Knowledge Fragments, Science China (Information Sciences), 2019, Accepted.
  • Zheng Yan, Jun Liu, Laurence T. Yang, Witold Pedrycz. [Editorial] Data fusion in heterogeneous networks, Information Fusion, 2020, 53, 1-3.
  • Ming Fan, Xiapu Luo, Jun Liu, Chunyin Nong, Qinghua Zheng, Ting Liu. CTDroid: Leveraging a Corpus of Technical Blogs for Android Malware Analysis, IEEE Transactions on Reliability, 2019, 69(1): 124-138.
  • Mengyue Liu, Jun Liu, Yihe Chen, Hao Chen, Meng Wang, Qinghua Zheng. AHNG: Representation Learning on Attributed Heterogeneous Network, Information Fusion, 2019, 50: 221-230.
  • 郑庆华,董博,钱步月,田锋,魏笔凡,张未展,刘均. 智慧教育研究现状与发展趋势, 计算机研究与发展, 2019, 56(1), 209-224.
  • Meng Wang, Jun Liu, Bifan Wei, Siyu Yao, Hongwei Zeng, Lei Shi. Answering Why-Not Questions on SPARQL Queries. KAIS. 2019, 58(1): 169-208.
  • Wenqiang Liu, Jun Liu, Bifan Wei, Yanan Qian, Haimeng Duan, Wei Hu, Xindong Wu. A New Truth Discovery Method for Resolving Object Conflicts over Linked Data with Scale-free Property. KAIS, 2019, 59(2): 465-495.

     Conference Papers

  • Jie Ma, Jun Liu, Yufei Li, Xin Hu, Yudai Pan, Shen Sun and Qika Lin. Jointly Optimized Neural Coreference Resolution with Mutual Attention. WSDM 2019.
  • Ruijie Wang , Meng Wang, Jun Liu, Michael Cochez, and Stefan Decker. Leveraging Knowledge Graph Embeddings for Natural Language Question Answering. DASFAA 2019. 
  • Zhaotong Guo, Bifan Wei, Jun Liu, Bei Wu. TF-Miner: Topic-specific Facet Mining by Label Propagation. DASFAA 2019. 
  • Luguo Xue, Minnan Luo, Zhen Peng, Jundong Li, Yan Chen, Jun Liu, Anomaly Detection in Time-Evolving Attributed Networks. DASFAA 2019.

 

2018:

     Journal  Papers

  • Wenqiang Liu, Jun Liu, Mengmeng Wu, Wei Hu, Bifan Wei, Qinghua Zheng. Representation Learning over Multiple Knowledge Graphs for Knowledge Graphs Alignment, Neurocomputing, 2018, 320: 12-24.
  • Lingyun Song, Jun Liu, Buyue Qian, Mingxuan Sun,et al. A Deep Multi-Modal CNN for Multi-Instance Multi-Label Image Classification. IEEE TIP, 2018, 27(12): 6025-6038.
  • Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, Ting Liu. Android Malware Familial Classification and Representative Sample Selection via Frequent Subgraph Analysis.  IEEE TIFS, 2018, 13(8), 1890-1905 .
  • Bei Wu, Bifan Wei, Jun Liu, Zhaotong Guo, Yuanhao Zheng, Yihe Chen. Facet Annotation by Extending CNN with a Matching Strategy. Neural Computation. 2018, 30(6), 1647-1672.
  • Lingling Zhang, Jun Liu, Ninnan Luo, Xiaojun Chang, Qinghua Zheng. Deep Semi-supervised Zero-shot Learning with Maximum Mean Discrepancy. Neural Computation, 2018, 30(5), 1426-1447.
  • Lingling Zhang, Ninnan Luo, Zhihui Li, Feiping Nie, Huangxiang Zhang, Jun Liu, Qinghua Zheng. Large Scale Robust Semi-supervised Classification. IEEE Transactions on Cybernetics, 2018, 49(3): 907-917.
  • Zheng Yan, Jun Liu, Laurence T. Yang, Nitesh Chawla. [Editorial]  Big Data Fusion in Internet of Things, Information Fusion, 2018, 40, 32-33.
  • Hao Chen, Jun Liu, Yanzhang Lv, Max Haifei Li, Mengyue Liu. Semi-supervised Clues Fusion for Spammer Detection in Sina Weibo. Information Fusion. 2018, 44, 22-32.

     Conference Papers

  • Ming Fan, Xiapu Luo, Jun Liu, Meng Wang, Chunyin Nong, Qinghua Zheng and Ting Liu. Graph Embedding based Familial Analysis of Android Malware using Unsupervised Learning, ICSE 2019. 
  • Ming Fan, Xiapu Luo, Jun Liu, Chunyin Nong, Qinghua Zheng and Ting Liu, CTDroid: Leveraging a Corpus of Technical Blogs for Android Malware Analysis. NASAC 2018.  (Best Paper Award)
  • Lingyun Song, Jun Liu, Buyue Qian, Yihe Chen. Connecting Language to Images: A Progressive Attention-Guided Network for Simultaneous Image Captioning and Language Grounding, AAAI 2019. 
  • Ruijie Wang, Meng Wang, and Jun Liu. Graph Embedding based Query Construction over Knowledge Graphs. IEEE ICBK 2018. (Best Paper Award)
  • Ruoqing Ren, Haimeng Duan, Wenqiang Liu and Jun Liu. AUnet: An Unsupervised Method for Answer Reliability Evaluation in Community QA Systems, DMMOOC 2018.
  • Meng Wang, Ruijie Wang, Jun Liu, Yihe Chen, Lei Zhang, Guilin Qi. Towards Empty Answers in SPARQL: Approximating Querying with RDF Embedding, ISWC 2018. (Best Student Paper Award Candidate)
  • Yu Tong, Wang Meng, Lv Yanzhang, Xue Luguo and Liu Jun. Interpretative Topic Categorization via Deep Multiple Instance Learning, IJCNN 2018. 
  • Hao Chen, Jun Liu, Yanzhang Lv. A Transfer Metric Learning Method for Spammer Detection.PAKDD 2018.

 

2017: 

     Journal  Papers

  • Lei Ding, Jun Liu, Tao Qin, Haifei Li. Internet Traffic Classification Based on Expanding Vector of Flow. Computer Networks. 2017, 129, 178-192.
  • Meng Wang, Weitong Chen, Sen Wang, Jun Liu, Xue Li, Bela Stantic. Answering Why-Not Questions on Semantic Multimedia Queries, Multimedia Tools and Applications, 2017, 77(8), 1-25.
  • Lingyun Song, Jun Liu, Minnan Luo, Buyue Qian, Kuan Yang.Sparse Relational Topical Coding on Multi-Modal Data, Pattern Recognition, 2017, 72, 368-380.
  • Xindong Wu, Huanhuan Chen, Jun Liu, Gongqing Wu, Ruqian Lu, and Nanning Zheng. Knowledge Engineering with Big Data (BigKE): A 54-Month, 45-Million RMB, 15-Institution National Grand Project, IEEE Access, 2017, 5(99), 12696-12701.
  • Ming Fan, Jun Liu, Wei Wang, Haifei Li, Zhenzhou Tian, Ting Liu, DAPASA: Detecting Android Piggybacked Apps through Sensitive Subgraph Analysis, IEEE TIFS, 2017, 12(8), 1772-1785.
  • Yanzhang Lv, Jun Liu, Hao Chen, Jianhong Mi, Mengyue Liu and Qinghua Zheng, Opinioned Post Detection in Sina Weibo, IEEE Access, 2017, 5(1), 7263-7271.
  • Jun Liu, Zheng Yan, Athanasios V. Vasilakos, and Laurence T. Yang. [Editorial] Data Mining in Cyber, Physical and Social Computing, IEEE SYSTEMS JOURNAL, 2017, 11(1), 194-196
  • Minnan Luo, Lingling Zhang, Jun Liu and Qinghua Zheng, Distributed Extreme Learning Machine with Alternating Direction Method of Multiplier, Neurocomputing, 2017, 261, 164-170. 

     Conference Papers

  • Yuanhao Zheng, Bifan Wei, Jun Liu, Meng Wang, Weitong Chen, Bei Wu and Yihe Chen.Quality Prediction of Newly Proposed Questions in CQA by Leveraging Weakly Supervised Learning, ADMA 2017.
  • Meng Wang, Jiaheng Zhang, Jun Liu, Wei Hu, Sen Wang and Wenqiang Liu. PDD Graph: Bridging Electronic Medical Records and Biomedical Knowledge Graphs via Entity Linking, ISWC 2017. 
  • Haimeng Duan, Yuanhao Zheng, Lei Shi, Changhong Jin, Hongwei Zeng,and Jun Liu, DKG: An Expanded Knowledge Base for Online Course, DMMOOC 2017.
  • Wenqiang Liu, Jun Liu, Haimeng Duan, Wei Hu and Bifan Wei, Exploiting Source-Object Network to Resolve Object Conflicts in Linked Data, ESWC 2017. 
  • Wenqiang Liu, Jun Liu, Haimeng Duan, Jian Zhang, Wei Hu, and Bifan Wei. [Demo]TruthDiscover: Resolving Object Conflicts on Massive Linked Data, WWW 2017.

 

2009~2016: 

     Journal  Papers

  • Wenqiang Liu, Jun Liu, Meng Wang, Qinghua Zheng, Wei Zhang, Lingyun Song, Siyu Yao. Faceted Fusion of RDF Data. Information Fusion, 2015, 23, 16-24
  • Weizhan Zhang, Jun Liu, Chen Liu, Qinghua Zheng, Wei Zhang. Workload Modeling for Virtual Machine-hosted Application. Expert Systems With Applications, 2015, 42(4): 1835-1844.
  • 吴信东, 陈欢欢, 刘均, 大数据知识工程基础理论及其应用研究, 中国计算机学会通讯, 2016, 12(11), 68-72
  • Lingyun Song, Minnan Luo, Jun Liu, Lingling Zhang, Haifei Li, Qinghua Zheng, Sparse Multi-Modal Topical Coding for Image Annotation, Neurocomputing, 2016, 214, 162-174.
  • Xindong Wu, Huanhuan Chen, Gong-Qing Wu, Jun Liu, Qinghua Zheng, Xiaofeng He, Aoying Zhou, Zhong-Qiu Zhao, Bifan Wei, Ming Gao, Yang Li, Qiping Zhang, Shichao Zhang, Nanning Zheng, Knowledge Engineering with Big Data, IEEE Intelligent Systems, 2015, 30(5), 46-55
  • Jun Liu, Zheng Yan, Laurance T. Yang. [Editorial] Fusion – An aide to data mining in Internet of Things. Information Fusion, 2015, 23, 1-2
  • Zheng Yan, Jun Liu, Athanasios Vasilakos, Laurance T. Yang, [Editorial] Trustworthy Data Fusion and Mining in Internet of Things. FGCS, 2015, 49, 45-46
  • Bifan Wei, Jun Liu, Qinghua Zheng, Wei Zhang, Chenchen Wang, Bei Wu, DF-Miner: Domain-specific Facet Mining by Leveraging the Hyperlink Structure of Wikipedia. Knowledge-Based Systems, 2015, 77, 80-91
  • Bifan Wei, Jun Liu, Jian Ma, Qinghua Zheng, Wei Zhang, Boqin Feng. Motif-based Hyponym Relation Extraction from Wikipedia Hyperlinks. IEEE TKDE, 2014, 26(10): 2507-2519.
  • Bifan Wei, Jun Liu, Qinghua Zheng, Wei Zhang, Xiaoyu Fu, Boqin Feng. A Survey of Faceted Search. Journal of Web Engineering, 2013,12(1-2):41-64.
  • Jun Liu, Jincheng Wang, Qinghua Zheng, Wei Zhang, Lu Jiang. Topological Analysis of Knowledge Maps. Knowledge-Based Systems, 2012, 36, 260-267.
  • Jun Liu,  Lu Jiang,  Zhaohui Wu,  Qinghua Zheng  and  Yanan Qian. Mining Learning-Dependency between Knowledge Units from Text. VLDB J.  2011, 20(3): 335-345
  • Jun Liu,  Lu Jiang,  Zhaohui Wu,  Qinghua Zheng. Deep Web Adaptive Crawling based on Minimum Executable Pattern. Journal of Intelligent Information Systems, 2011, 36(2): 197-215

     Conference Papers

  • Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Tianyi Chen, Zhenzhou Tian, Xiaodong Zhang and Ting Liu. Frequent Subgraph based Familial Classification of Android Malware. ISSRE2016. (Best Paper Award)
  • Siyu Yao, Jun Liu, Meng Wang, Bifan Wei and Xuelu Chen.  [Demo]ANNA: Answering Why-Not Questions for SPARQL, ISWC 2015.
  • Minnan Luo, Lingling Zhang, Qinghua Zheng, and Jun Liu. Distributed Extreme Learning Machine with Alternating Direction Method of Multiplier, ELM 2015.
  • Meng Wang, Jun Liu, Wenqiang Liu, Qinghua Zheng, Wei Zhang, Lingyun Song, Siyu Yao. Faceted Exploring for Domain Knowledge over Linked Open Data, CIKM2014.
  • Bifan Wei, Jun Liu, Jian Ma, Qinghua Zheng, Wei Zhang, Boqin Feng. DFT-extractor: A System to Extract Domain-specific Faceted Taxonomies from Wikipedia. WWW2013.
  • Bifan Wei, Jun Liu, Jian Ma, Qinghua Zheng, Wei Zhang, Boqin Feng. MOTIF-RE: Motif-based Hypernym/hyponym Relation Extraction from Wikipedia Links. ICONIP2012.
  • Jun Liu,  Lu Jiang, Zhaohui Wu, Qinghua Zheng. Mining Preorder Relation between Knowledge Units from Text. ACM SAC 2010.