Publications

  1. Ferreira, T.Z., Pan, Z., Mouthuy, P.-A., and Brassart, L., Characterisation and modelling of continuous electrospun poly (ɛ-caprolactone) filaments for biological tissue repair. Journal of the Mechanical Behavior of Biomedical Materials, 2025. 161: p. 106810.
  2. Qiao, Y., Sun, Y., Guo, H., Pan, Z., Wang, S., Fan, J., and Luo, K., Effects of non-Newtonian models on viscosity of unsteady aortic blood flow. Physics of Fluids, 2024. 36(11).
  3. Pan, Z., Chen, H., and Brassart, L., Constitutive modelling of glassy polymers considering shear plasticity and craze yielding. International Journal of Plasticity, 2024. 178: p. 103996.
  4. Pan, Z. and Brassart, L., A reaction-diffusion framework for hydrolytic degradation of amorphous polymers based on a discrete chain scission model. Acta Biomaterialia, 2023. 167: p. 361-373.
  5. Chen, H., Pan, Z., Yuan, D., Sulley, G.S., Oosterbeek, R.N., Williams, C.K., and Brassart, L., Shear yielding and crazing in dry and wet amorphous PLA at body temperature. Polymer, 2023. 289: p. 126477.
  6. Pan, Z., Zhang, L.W., and Liew, K.M., The use of curvilinear fibers for enhancement of progressive failure performance of perforated composite panels. Composite Structures, 2022. 288: p. 115424.
  7. Pan, Z., Zhang, L.W., and Liew, K.M., A phase-field framework for failure modeling of variable stiffness composite laminae. Computer Methods in Applied Mechanics and Engineering, 2022. 388: p. 114192.
  8. Pan, Z. and Brassart, L., Constitutive modelling of hydrolytic degradation in hydrogels. Journal of the Mechanics and Physics of Solids, 2022. 167: p. 105016.
  9. Pan, Z., Zhang, L.-W., and Liew, K.M., Adaptive surrogate-based harmony search algorithm for design optimization of variable stiffness composite materials. Computer Methods in Applied Mechanics and Engineering, 2021. 379: p. 113754.
  10. Zhang, L.-W., Pan, Z., and Chen, X., Vibration characteristics of matrix cracked pretwisted hybrid composite blades containing CNTRC layers. Journal of Sound and Vibration, 2020. 473: p. 115242.
  11. Xiang, R., Pan, Z., Ouyang, H., and Zhang, L.-W., A study of the vibration and lay-up optimization of rotating cross-ply laminated nanocomposite blades. Composite Structures, 2020. 235: p. 111775.
  12. Pan, Z., Chen, X., and Zhang, L.-W., Modeling large amplitude vibration of pretwisted hybrid composite blades containing CNTRC layers and matrix cracked FRC layers. Applied Mathematical Modelling, 2020. 83: p. 640-659.
  13. Pan, Z. and Liew, K.M., Predicting vibration characteristics of rotating composite blades containing CNT-reinforced composite laminae and damaged fiber-reinforced composite laminae. Composite Structures, 2020. 250: p. 112580.
  14. Liew, K.M., Pan, Z., and Zhang, L.-W., The recent progress of functionally graded CNT reinforced composites and structures. Science China Physics, Mechanics & Astronomy, 2020. 63(3): p. 234601.
  15. Pan, Z., Zhang, L.W., and Liew, K.M., Modeling geometrically nonlinear large deformation behaviors of matrix cracked hybrid composite deep shells containing CNTRC layers. Computer Methods in Applied Mechanics and Engineering, 2019. 355: p. 753-778.
  16. Pan, Z., Huang, R., and Liu, Z., Prediction of the thermomechanical behavior of particle reinforced shape memory polymers. Polymer Composites, 2019. 40(1): p. 353-363.
  17. Liew, K.M., Pan, Z., and Zhang, L.W., An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application. Composite Structures, 2019. 216: p. 240-259.
  18. Zhang, N., Zheng, S., Pan, Z., and Liu, Z., Phase transition effects on mechanical properties of NIPA hydrogel. Polymers, 2018. 10(4): p. 358.
  19. Zhang, N., Pan, Z., Lei, J., and Liu, Z., Effects of temperature on the fracture and fatigue damage of temperature sensitive hydrogels. RSC advances, 2018. 8(54): p. 31048-31054.
  20. Pan, Z., Zhou, Y., Zhang, N., and Liu, Z., A Modified Phase‐based Constitutive Model for Shape Memory Polymers. Polymer International, 2018.
  21. Pan, Z. and Liu, Z., A novel fractional viscoelastic constitutive model for shape memory polymers. Journal of Polymer Science Part B: Polymer Physics, 2018. 56(16): p. 1125-1134.