英文期刊论文

2024

[61]Cheng X, Ding Y-Z, Ji W-T*, et al. Experimental investigation on the combined cooling methods of jet impingement and film cooling for the pressure surface of the turbine vane leading cavity[J]. International Journal of Heat and Mass Transfer, 2024, 223: 125221.

[60]Huang K, Cheng X, Yang X, Jiang Lei, WT Ji*, WQ Tao. Experimental and numerical investigation on the film-cooling a gas turbine vane pressure side with various internal rib angles[J]. Applied Thermal Engineering, 2024, 239: 122100.

 

2023

[59]Wang C-Y, Ji W-T*, Zhao C-Y, et al. Experimental determination of the role of roughness and wettability on pool-boiling heat transfer of refrigerant[J]. International Journal of Refrigeration, 2023, 153: 205-221.

[58]Cheng X, Yu Q-N, Ji W-T*, Wu J-M, He Y-L, Tao W-Q. Numerical study on the effect of different internal angled ribs on the external film cooling performance. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2023;237(8):1683-1698.

[57]Cheng X, Li Z R, Wan H N, Ji WT*, et al. Effect of mass flow ratios on the conjugate heat transfer of a metal turbine vane at medium temperature[J]. International Journal of Heat and Mass Transfer, 2023, 209: 124096.

[56]Sun N, Lu W-R, Ma Y, Zhang MZ, Chen L, Ji WT*, Tao WQ. An experimental and numerical study on the liquid cooling of a gas turbine blade[J]. Applied Thermal Engineering, 2023, 223: 120005.
[55]Zhao C-Y, Yao Z-L, Qi D, Ji WT, Tao WQ. Hydrodynamics and thermal performance of turbulent falling films through horizontal tube bundles[J]. International Journal of Multiphase Flow, 2023, 158: 104299.
[54]Zhang C, Chen L, Qin F, Liu LG, Ji WT, Tao WQ. Lattice Boltzmann study of bubble dynamic behaviors and heat transfer performance during flow boiling in a serpentine microchannel[J]. Applied Thermal Engineering, 2023, 218: 119331.
[53]Cheng X, Li Z-R, Wan H-N, Bi QC*, Ji WT*. Experimental investigation on convective heat transfer of hydrocarbon fuel in transverse corrugated tubes[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123586.
[52]Mostafa I, Jin P-H, Ji W-T, Tao WQ. An experimental study of the inundation effect on filmwise condensation heat transfer over horizontal smooth and enhanced tubes[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123950.

 

2022

[51]Jin W, Jia Y, Lei J, Ji WT,Wu JM. Coupled Heat transfer Analysis of Internal and Film Cooling of Turbine Blade under Medium Temperature Conditions[J]. Applied Thermal Engineering, 2022,214: 118792.

[50]Zhao C-Y, Liang L-W, Qi D, Ji WT, Tao WQ. The effect of gas streams on the hydrodynamics, heat and mass transfer in falling film evaporation, absorption, cooling and dehumidification: A comprehensive review[J]. Building and Environment, 2022: 109183.

[49]Zhao C-Y, Yao Z-L, Qi D, Ji WT, Tao WQ. Numerical investigation of tube bundle arrangement effect on falling film fluid flow and heat transfer[J]. Applied Thermal Engineering, 2022, 201: 117828.

[48]Zhao C-Y, Qi D, Ji W-T, et al. A comprehensive review on computational studies of falling film hydrodynamics and heat transfer on the horizontal tube and tube bundle[J]. Applied Thermal Engineering, 2022, 202: 117869.

 

2021

[47]Zhang C, Chen L, Ji WT, et al. Lattice Boltzmann mesoscopic modeling of flow boiling heat transfer processes in a microchannel[J]. Applied Thermal Engineering, 2021, 197: 117369.

[46]Zhao C-Y, Qi D, Li Q-T, Jin P.H., Ji W.T., Tao W.Q. Peripheral heat transfer prediction of the subcooled falling liquid film on a horizontal smooth tube[J]. Physics of Fluids, 2021, 33 (10): 102104.

[45]Liu X, Chen L, Peng M, Ji WT, et al. Topology optimization of the manifold microchannels with triple-objective functions[J]. Numerical Heat Transfer, Part B: Fundamentals, 2021, 80 (5-6): 89-114.

[44]Chong G-H, Lu X-D, Ji W-T*, et al. Deposition of nano-scale polymer film on micro-fins to enhance the film-wise condensation of very low surface tension substances[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121499.

[43]Ji W-T, Lu X-D, Cheng D-Y, et al. Effect of wettability on nucleate pool boiling heat transfer of a low surface tension fluid outside horizontal finned tubes[J]. International Communications in Heat and Mass Transfer, 2021, 125: 105340.

[42]Jin P-H, Mostafa I, He P, Zhang Z, Zhao CY, Ji WT, Tao WQ. Liquid film boiling on plain and structured tubular surfaces with and without hydrophobic coating[J]. International Communications in Heat and Mass Transfer, 2021, 125: 105284.

[41]Jin W, Wu J, Jia N, Lei J, Ji WT, Xie GN. Effect of shape and distribution of pin-fins on the flow and heat transfer characteristics in the rectangular cooling channel[J]. International Journal of Thermal Sciences, 2021, 161: 106758.

[40]Ji W-T, Xiong S-M, Chen L, et al. Effect of subsurface tunnel on the nucleate pool boiling heat transfer of R1234ze (E), R1233zd (E) and R134a[J]. International Journal of Refrigeration, 2021, 122: 122-133.

 

2020

[39]Ji W-T, Lu X-D, Chen L, et al. Experimental investigation on the ice melting heat transfer with a steam jet impingement method[J]. International Communications in Heat and Mass Transfer, 2020, 118: 104901.

[38]Peng M, Chen L, Ji WT, et al. Numerical study on flow and heat transfer in a multi-jet microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119982.

[37]Jin P-H, Zhang Z, Mostafa I, Zhao CY, Ji WT, Tao WQ. Experimental study of falling film evaporation in tube bundles of doubly-enhanced, horizontal tubes[J]. Applied Thermal Engineering, 2020, 170: 115006.

[36]Zhao C-Y, Ji W-T, Jin P-H, et al. Falling film evaporation in a triangular tube bundle under the influence of cross vapor stream[J]. International Journal of Refrigeration, 2020, 112: 44-55.

[35]Ji W-T, Lu X-D, Yu Q-N, et al. Film-wise condensation of R-134a, R-1234ze(E) and R-1233zd(E) outside the finned tubes with different fin thickness[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118829.

[34]Ji W-T, Mao S-F, Chong G-H, et al. Effect of Fin Structure on the Condensation of R-134a, R-1234ze(E), and R-1233zd(E) Outside theTitanium Tubes[J]. Journal of heat transfer, 2020, 142 (1):014502.

 

2019

[33]Mao S-F, Ji W-T*, Chong G-H, et al. Numerical investigation on the nucleate pool boiling heat transfer of R134a outside the plain tube[J]. Numerical Heat Transfer, Part A: Applications, 2019, 76 (11): 889-908.

[32]Ji W-T, Mao S-F, Chong G-H, et al. Numerical and experimental investigation on the condensing heat transfer of R134a outside plain and integral-fin tubes[J]. Applied Thermal Engineering, 2019, 159: 113878.

[31]Ji W-T, Fan J-F, Zhao C-Y, Tao WQ. A revised performance evaluation method for energy saving effectiveness of heat transfer enhancement techniques[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1142-1153.

[30]Jin P-H, Zhang Z, Mostafa I, Zhao C-Y, Ji WT, Tao WQ.. Heat transfer correlations of refrigerant falling film evaporation on a single horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2019, 133: 96-106.

[29]Li S-Y, Ji W-T*, Zhao C-Y, et al. Effects of magnetic field on the pool boiling heat transfer of water-based α-Fe2O3 and γ-Fe2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2019, 128: 762-772.

[28]Ji W-T, Zhao E-T, Zhao C-Y, et al. Falling film evaporation and nucleate pool boiling heat transfer of R134a on the same enhanced tube[J]. Applied Thermal Engineering, 2019, 147: 113-121.

 

2018

[27]Ji W-T*, Chong G-H, Zhao C-Y, et al. Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes[J]. International Journal of Refrigeration, 2018, 93: 259-268.

[26]Jin P-H, Zhao C-Y, Ji W-T, et al. Experimental investigation of R410A and R32 falling film evaporation on horizontal enhanced tubes[J]. Applied Thermal Engineering, 2018, 137: 739-748.

[25]Zhao C-Y, Ji W-T, Jin P-H, et al. Cross vapor stream effect on falling film evaporation in horizontal tube bundle using R134a[J]. Heat Transfer Engineering, 2018, 39 (7-8): 724-737.

[24]Zhang H, Zhang C, Ji W,T et al. Experimental Characterization of the Thermal Conductivity and Microstructure of Opacifier-Fiber-Aerogel Composite[J]. Molecules, 2018, 23 (9): 2198.

[23]Zhao C-Y, Ji W-T, Jin P-H, et al. Effect of downward vapor stream on falling film evaporation of R134a in a tube bundle[J]. International Journal of Refrigeration, 2018, 89: 112-121.

[22]JI W-T*, Zhao C-Y, Lofton J, et al. Condensation of R134a and R22 in shell and tube condensers mounted with high density low-fin tubes[J]. Journal of heat transfer, 2018, 140 (9): 091503.

[21]Ji WT*, Zhao P-F, Zhao C-Y, et al. Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability[J]. Nanoscale and Microscale Thermophysical Engineering, 2018: 1-28.

[20]Zhao C-Y, Ji W-T, He Y-L, et al. A comprehensive numerical study on the subcooled falling film heat transfer on a horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2018, 119: 259-270.

[19]Zhao C-Y, Ji W-T, Jin P-H, et al. Hydrodynamic behaviors of the falling film flow on a horizontal tube and construction of new film thickness correlation[J]. International Journal of Heat and Mass Transfer, 2018, 119: 564-576.

[18]Zhao C-Y, Ji W-T, Jin P-H, et al. Experimental study of the local and average falling film evaporation coefficients in a horizontal enhanced tube bundle using R134a[J]. Applied Thermal Engineering, 2018, 129: 502-511.

 

2017

[17]Ji W-T*, Zhao C-Y, Zhang D-C, et al. Pool boiling heat transfer of R134a outside reentrant cavity tubes at higher heat flux[J]. Applied Thermal Engineering, 2017, 127: 1364-1371.

[16]Zhao C-Y, Ji W-T, Jin P-H, Zhong YJ, Tao WQ*. The influence of surface structure and thermal conductivity of the tube on the condensation heat transfer of R134a and R404A over single horizontal enhanced tubes[J]. Applied Thermal Engineering, 2017, 125.

[15]Mou S-C, Luan Y-X, Ji W-T*, Zhang JF, Tao WQ. An example for the effect of round-off errors on numerical heat transfer[J]. Numerical Heat Transfer, Part B: Fundamentals, 2017, 72 (1): 21-32.

[14]Ji W-T*, Jacobi AM, He Y-L, Tao WQ. Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow[J]. International Journal of Heat and Mass Transfer, 2017, 111: 467-483.

[13]Zhao C-Y, Jin P-H, Ji W-T, Tao WQ*. Experimental investigations of R134a and R123 falling film evaporation on enhanced horizontal tubes[J]. International Journal of Refrigeration, 2017, 75: 190-203.

 

2016

[12] W.-T. Ji, C.-Y. Zhao, D.-C. Zhang, S. Yoshioka, Y.-L. He, W.-Q. Tao*, Effect of vapor flow on the falling film evaporation of R134a outside a horizontal tube bundle, International Journal of Heat and Mass Transfer, 92 (2016) 1171-1181.

[11] C.-Y. Zhao, W.-T. Ji, P.-H. Jin, W.-Q. Tao*, Heat transfer correlation of the falling film evaporation on a single horizontal smooth tube, Applied Thermal Engineering, 103 (2016) 177-186.

 

2015

[10]Ji WT, Numata M, He Y-L, Tao Wen-Quan*. Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2015, 86: 744-754.

[9]Ji W-T, Li Z-Y, Qu Z-G, Tao W-Q*. Film condensing heat transfer of R134a on single horizontal tube coated with open cell copper foam[J]. Applied Thermal  Engineering, 2015, 76: 335-343.

[8]Ji W-T, Jacobi AM, He Y-L, Tao W-Q*. Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow[J]. International Journal of Heat and Mass Transfer, 2015, 88: 735-754.

[7]Ji W-T, Zhao C-Y, He Y-L, Tao WQ*. Experimental validation of Cooper correlation at higher heat flux[J]. International Journal of Heat and Mass Transfer, 2015, 90: 1241-1243.

 

2014
[6] Ji W-T, Zhao C-Y, Zhang D-C, Tao W-Q*. Condensation of R134a outside single horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes[J]. International Journal of Heat and Mass Transfer, 2014, 77: 194-201.


2012

[5].Ji WT, Zhao CY, Zhang DC, He YL,Tao WQ*. Influence of condensate inundation on heat transfer of R134a condensing on three dimensional enhanced tubes and integral-fin tubes with high fin density[J]. Applied Thermal Engineering, 2012, 38 (0): 151-159.(SCI:917UV) 

 

2011
[4].Ji WT,Qu ZG*, Li ZY, Guo JF, Zhang DC, Tao WQ, Pool boiling heat transfer of R134a on single horizontal tube surfaces sintered with open-celled copper foam[J], International Journal of Thermal Science,2011,50(1): 2248-2255.(SCI:820XE)
[3].Ji WT, Zhang DC, He, YL, Tao WQ*, Prediction of Fully Developed turbulent Heat Transfer of Internal Helically Ribbed Tubes - an Extension of Gnielinski Equation, International Journal of Heat and Mass Transfer, 2011, 55 (4): 1375-1384.(SCI:895BC)

 

2010

[2].Ji WT, Zhang DC, Feng N, Guo J. F. Numata, M. Xi G. N. Tao W Q*. Nucleate Pool Boiling Heat Transfer of R134a and R134a PVE Lubricant Mixtures on Smooth and Five Enhanced Tubes[J]. Journal of Heat Transfer- ASME, 2010, 132 (11): 8.(SCI:672VM)

 

2007

[1].Zhang DC, Ji WT, Tao WQ*. Condensation heat transfer of HFC134a on horizontal low thermal conductivity tubes[J]. International Communications in Heat and Mass Transfer, 2007, 34 (8): 917-923.(SCI:212CD)
 

中文期刊论文

[18]万红牛,丁俣中,程想,陈黎,王进,冀文涛*,陶文铨.宽雷诺数下肋参数对U型内冷通道流动与换热特性影响的实验研究[J].西安交通大学学报,2024:1-10.

[17]程想,丁俣中,万红牛,冀文涛*,陶文铨.冲击孔位置对涡轮叶片冲击/气膜复合冷却特性影响的实验研究[J].西安交通大学学报,2023,57(12):59-71.

[16]冀文涛,陈黎,任秦龙,戴艳俊, 陈磊, 郑春宇, 方文振, 李楠, 毛帅峰, 陶文铨*.数值传热学课程产学研探索与实践[J].高等工程教育研究,2023(S1):182-184.

[15]张科,段敬添,雷蒋,王子瑞,冀文涛,武俊梅.基于MRV的菱形肋柱冷却通道三维全流场分析[J].航空动力学报,2023:1-11.

[14]贾宁,靳伟,武俊梅,雷蒋,冀文涛.斜劈式翼型扰流柱冷却通道流动与换热数值研究[J].航空动力学报,2021,36(01):61-69.

[13]赵创要,樊菊芳,李安桂,冀文涛,靳蒲航,陶文铨.饱和温度及热流密度对水平管外降膜蒸发传热影响的实验研究[J].暖通空调,2020,50(05):107-110.

[12]张虎,马奕新,王娴,冀文涛,李跃明,陶文铨.添加物对氧化硅凝胶隔热性能影响的实验研究[J].工程热物理学报,2018,39(05):1039-1043.

[11]赵鹏飞,冀文涛*,赵二涛,何雅玲,陶文铨.不同润湿性表面池沸腾换热特性研究[J].中国科技论文,2018,13(11):1211-1216.

[10]冀文涛, 张定才, 赵创要,  何雅玲, 陶文铨. 高热通量水平管外池沸腾传热[J]. 化工学报, 2016, 67 (S1): 28-32.

[9] 郭剑飞, 李增耀, 屈治国, 冀文涛, 陶文铨, 水平金属泡沫管外R134a凝结传热实验研究, 工程热物理学报, 32(5) (2011) 839-842.

[8] 冀文涛, 屈治国, 郭剑飞, 张定才, 陶文铨, 水平管外开孔铜泡沫R134a池沸腾换热实验研究, 工程热物理学报, 31(7) (2010) 1185-1188.

[7]冀文涛, 冯楠, 张定才, 郭剑飞, 陶文铨, 润滑油对水平管外R134a池沸腾换热的影响, 工程热物理学报, 30(5) (2009) 821-823.

[6]张定才, 冀文涛, 陶文铨, 何雅玲, 不凝气体对R123凝结换热的影响, 工程热物理学报, 30(12) (2009) 2062-2064.

[5]冀文涛, 张定才, 冯楠, 陶文铨, 水平管外含油及纯R134a池沸腾换热特性比较, 工程热物理学报, 29(7) (2008) 1195-1198.

[4]赵创要,冀文涛,陶文铨. R404A在低导热系数管外凝结传热的实验研究.工程热热物理学报,35(1)132-135.
[3] 赵创要,冀文涛,陶文铨.R134a在水平管外降膜蒸发的实验研究 .工程热热物理学报.179-183.
[2] 张定才,杜佳迪, 冀文涛,张振,朱春洁, 何雅玲, 陶文铨.R134a/R125混合工质水平管外凝结换热.化工学报.65(S1)119-124
[1] 张定才,田松娜,冀文涛,赵安利,范晓伟; 陶文铨.R417A在水平双侧强化管外沸腾换热研究 .制冷学报,35(3)114-118.

英文会议论文

2023

[18]Zhao-Ren Li, Guo-Hui Ou, Zi-Han Wang, Kong Ling, Wen-Tao Ji*, Wen-Quan Tao. Stability analysis of coupled Navier-Stokes solver in transient problems of incompressible flow,International Heat Transfer Conference 17,August, 14-18, 2023, Cape Town, South Africa.

[17]Guo-Hui OU, Zhao-Ren LI, Wen-Tao JI*, Wen-Quan Tao.Improved Robustness and Efficiency of Fully Coupled Pressure-Based Algorithm for Compressible Flows with Careful Treatment of Boundary Conditions,The 9th Asian Symposium on Computational Heat Transfer and Fluid Flow. December 4-6, 2023, Thuwal, Saudi Arabia.

[16]Xiang Cheng, Kun Huang, Yu-Zhong Ding, Zhao-Ren Li, Wen-Tao Ji*, Wen-Quan Tao. Experimental and Numerical Investigation on the Effect of Rib Turbulators on Film Cooling with Coolant Cross-flow,The 9th Asian Symposium on Computational Heat Transfer and Fluid Flow. December 4-6, 2023, Thuwal, Saudi Arabia.

[15]Peng Gao, Yi Liu, Wen-Tao Ji*, Wen-Quan Tao. Design and Optimization of Finless Flat Tube Heat Exchanger,2nd International Conference on Energy Storage and Saving (ICENSS 2023), Nov. 24-27, 2023, Xi’an, China 

 

2022

[14]Sun N, Yu QN, Ji WT*, et al. Numerical simulation of turbine blade internal and external heat transfer with the multi-layer coupling method[C]. Proceedings of Global Power and Propulsion Society, Xi’an, 2021.

2021

[13]Ning Sun, Qiu-Nan Yu, Xiang Cheng, Wen-Tao Ji*, Ya-Ling He, Wen-Quan Tao,Numerical Simulation and Experimental Study on the Liquid Cooling of Gas Turbine Vane,8th Asian Symposium on Computational Heat Transfer and Fluid Flow, Sep. 23-26, 2021,Qingdao, China

[12]Ji WT* Yu QN, Sun N, Tao WQ, Numerical investigation on the effect of internal rib angle on the external film cooling effectiveness, 6th International Workshop on Heat/Mass Transfer Advances for Energy Conservation and Pollution Control (IWHT2021), August 13-16, 2021,Harbin, China

 

2019

[11]Ji WT, Chong GH, Mao SF, Zhao CY, Tao WQ,Condensation heat transfer of R134a and R1234ze(E) on horizontal tubes coated with hydrophobic films,5th International Workshop on Heat-Mass Transfer Advances for ENERGY CONSERVATION and POLLUTION CONTROL,13-16 August 2019, Novosibirsk, Russia

[10]Mao SF, Ji* WT, Yu QN, Lu XD, Tao WQ,3D numerical simulation of plate heat exchangers with three different surface structures,The 7th Asian Symposium on Computational Heat Transfer and Fluid Flow- 2019,Sep. 3-7, 2019, Tokyo,  Japan

 

2018

[9]JI W-T*, Zhao C-Y,  et al.Comparative study on the pool boiling and falling film evaporation of refrigerant r134a outside the same tubes,16th International Heat Transfer Conference, IHTC-16, August 10-15, 2018, Beijing, China

 

2017

[8]Wen-Tao JI*, Chuang-Yao ZHAO, Ding-Cai ZHANG, Zeng-Yao LI, Ya-Ling HE, Wen-Quan TAO, Pool boiling heat transfer of R134a outside reentrant cavity tubes at higher heat flux,2017 American Society of Thermal and Fluids Engineers (ASTFE) Conference and 4th International Workshop on Heat Transfer (IWHT), April 2-5, 2017,Las Vegas, NV, USA.

 

2015

[7].C.Y. Zhao, W.T. Ji, P. H. Jin, W.Q. Tao,Cross vapor flow effect on falling film evaporation outside horizontal tube bundle using R134a,The 3rd International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control (IWHT2015) October 16-19, 2015, Taipei, Taiwan

 

2014

[6]Ji W-T, Zhao C-Y, Dai Q-B, Tao WQ. Experimental Study of Water Cooled Condenser Made of Three Dimensional and High Fin Density Integral-Finned Tubes[C]: ASME 2014 International Mechanical Engineering Congress & Exposition, November 14-20,2014, Montreal,Canada.
[5]Ji W-T, Zhao C-Y, He Y-L, Tao W-Q Vapor flow effect on falling film evaporation outside horizontal tube bundle. The 15th International Heat Transfer Conference(IHTC-15)-8581, August 10-15th 2014. Kyoto, Japan.
[4] Ding-cai Zhang, Wen-tao Ji, Jia-di Du, Zhen Zhang, Xiao-wei Fan, Ya-Ling He, Wen-Quan Tao. Parameter Comparison of Condensation Heat Transfer of R134a Outside Horizontal Low-Finned Tubes. The 15th International Heat Transfer Conference(IHTC-15)-8581, August 10-15th 2014. Kyoto, Japan.

 

2013

[3]Chen L, Ji WT, Tao WQ. Coupling Finite Volume method and Lattice Boltzmann Method for Multi-Scale Multiple Physicochemical processes, The 4th Asian Symposium on Computational Heat Transfer and Fluid Flow, 2013, HongKong, China
[2]Zhao CY, Ji WT, Tao WQ Numerical Study on Flow Characteristics of Falling Film on a Horizontal Circular Tube, The 4th Asian Symposium on Computational Heat Transfer and Fluid Flow, 2013, HongKong, China

 

2012

[1].Chuangyao Zhao, Wentao Ji, Yaling He, Wenquan Tao,Falling Film Evaporation—A Review and Test Rig Construction, 4th International Symposium on Heat Transfer and Energy Conservation. January 6-9, 2012 Guangzhou, China

中文会议论文

2023

[19]冀文涛,张鸿飞,段欣悦,陶文铨,板片结构参数对板式换热器流动换热特性影响的实验研究,2023年中国工程热物理学会传热传质学术会议,成都,2023年11月17-19日.

[18]杜毅,万红牛,刘杙,冀文涛*,陶文铨,内螺纹几何参数对管内流动与换热影响的实验研究,2023年中国制冷学会学术年会,苏州,2023年11月22-24日.

 

2022

[17]程想,万红牛,李兆仁,黄昆,冀文涛*.涡轮叶片前腔内外耦合换热的实验研究[C]. 中国工程热物理年会热机气动热力学学术会议论文. 杭州,2022(03).

[16]黄昆,程想,雷蒋,武俊梅,冀文涛*.不同肋角度和密度比下气膜冷却特性实验研究[C]. 中国工程热物理年会热机气动热力学学术会议论文. 杭州,2022(03).

[15]张鸿飞,张润泽,黄昆,杜毅,冀文涛*.水平管外烧结表面丙烷和R134a的池沸腾换热实验研究[C]. 中国工程热物理年会传热传质学学术会议论文. 武汉(线上),2022(11).

[14]冀文涛,崇国魂,陶文铨. 三维微肋表面改性处理强化有机工质相变换热实验研究[C]. 中国工程热物理年会传热传质学学术会议论文. 上海(线上),2022(07).

 

2022年之前

[13].崇国魂,毛帅峰,冀文涛*,陶文铨.R134a、R1234ze(E)在水平钛管外凝结换热的实验研究[C]. 中国工程热物理年会传热传质学学术会议论文. 哈尔滨,2018(10).

[12].赵鹏飞,冀文涛*,何雅玲,陶文铨.疏水/超疏水表面池沸腾换热特性研究[C]. 中国工程热物理年会传热传质学学术会议论文. 苏州,2017(10).

[11]赵二涛,冀文涛*,李增耀等.R134a在水平双侧强化管外池沸腾换热特性的研究[C].中国工程热物理年会传热传质学学术会议论文,北京,2016(10).

[10]冀文涛*, 张定才,赵创要,何雅玲,陶文铨,高热流密度强化管外R134a池沸腾传热的实验研究. 中国工程热物理年会传热传质学学术会议论文,大连,2015(10).

[9]赵创要,冀文涛,靳蒲航,何雅玲,陶文铨,饱和温度及热流密度对水平单管外降膜蒸发的影响[C].中国工程热物理年会传热传质学学术会议论文,西安,2014(10).

[8]赵创要,冀文涛,陶文铨,水平管外R134a降膜蒸发实验研究[C].中国工程热物理年会传热传质学学术会议论文,重庆,2013(10).

[7]赵创要,冀文涛,陶文铨,低导热系数管外R404A凝结传热实验研究[C].中国工程热物理年会传热传质学学术会议论文,东莞,2012(10).

[6]冀文涛,赵创要,张定才,陶文铨.低肋管 R134a 凝结换热的实验研究[C].中国工程热物理年会传热传质学学术会议论文, 西安,2011(10).
[5]冀文涛,冯楠, 张定才,何雅玲,陶文铨.内螺纹管强化管管内充分发展单相强制对流湍流传热预测[C].中国工程热物理年会传热传质学学术会议论文,西安,2011(10).

[4]冀文涛,屈治国,郭剑飞,冯楠,张定才,陶文铨,水平管外开孔铜泡沫R134a池沸腾换热实验研究[C],中国工程热物理年会传热传质学学术会议论文,2009(10).

[3]冯楠,冀文涛,郭剑飞,张定才,李增耀,陶文铨,水平管管外冷凝蒸发传热性能实验研究[C],中国工程热物理年会传热传质学学术会议论文,2008(10).

[2]冀文涛,冯楠,郭剑飞,张定才,陶文铨,润滑油对水平管 R134a池沸腾换热的影响[C],中国工程热物理年会传热传质学学术会议论文,2008(10).

[1]冀文涛,张定才,冯楠,陶文铨. 水平强化管外R134a替代R12以及R134a含微量润滑油池沸腾换热热的性能研究[C]. 中国工程热物理年会传热传质学学术会议论文,广州,2007.

 

授权专利

[1] 冀文涛,赵创要,何雅玲,陶文铨. 一种卧式管壳式水冷冷凝器,实用新型:ZL201320567817.8,授权公告日:2014.03.12,申请日:2013.09.12.

[2] 陶文铨,田恩,金宇,冀文涛,何雅玲. 一种废气余热回收换热器,发明专利:ZL201610340116.9,授权公告日:2017.02.22,申请日:2016.05.20.

[3] 冀文涛,李增耀,陶文铨. 水平管束及单管外制冷工质降膜蒸发、池沸腾和凝结相变换热测试装置, 发明专利:ZL201710453004.9,授权公告日:2019.01.29,申请日:2017.06.15.

[4] 冀文涛,靳蒲航,王凯,付铁岩,曲少杰,陶文铨.一种高效复合双侧强化传热管, 发明专利:ZL201910356278.5, 授权公告日:2021.07.13,申请日:2019.04.2.

[5] 冀文涛,崇国魂,陶文铨.一种表面疏水改性复合冷凝强化传热管及其制备方法,发明专利:ZL201910784603.8, 授权公告日:2021.03.16,申请日:2019.08.23.

[6] 冀文涛,孙宁,何雅玲, 陶文铨. 一种具有单一煤油冷却通道的涡轮叶片,发明专利:ZL202110820765.X, 授权公告日:2022.09.16,申请日:2021.07.20.

[7] 冀文涛,孙宁,何雅玲, 陶文铨. 一种具有煤油冷却微通道的涡轮叶片, 发明专利:ZL202110820778.7, 授权公告日:2022.09.16,申请日:2021.07.20.

[8] 冀文涛,孙宁,于秋楠, 何雅玲,陶文铨. 一种具有气膜冷却结构的涡轮叶片. 发明专利:ZL202110875707.7, 授权公告日:2022.09.16,申请日:2021.07.30.

[9] 冀文涛,孙宁,程想,黄昆,熊世明,何雅玲. 一种燃气轮机叶片内外耦合的多尺度计算方法,发明专利:202110904246.1,授权公告日:2024.01.06,申请日:2021.08.06.