Research Interests

(1)光-热化学转化与甲烷制氢Solar-Thermo-chemical Conversion) 

           

  ​​​(2)液流电池储能技术 Redox Flow Battery

           

 

(3)PEM燃料电池与PEM电解池(PEM-based Fuel Cell and Electrolyzer)


(4)固态储氢系统热设计与能量管理(MH Reactor Design and Energy Management)

 

(5)太阳能光热发电 (Concentrated Solar Power)

 

Book and Book Chapters

No entries were found.
Republication Author Republication date Publisher
可再生能源概论 左然,徐谦,杨卫卫 2021-04-01 机械工业出版社
FUEL CELLS - DIRECT ALCOHOL FUEL CELLS | Modeling, Encyclopedia of Electrochemical Power Sources T.S. Zhao, W.W. Yang 2009-01-01 Elsevier
燃料电池中多相多组分传输过程的模拟 (442)《10000个科学难题:物理学卷》 赵天寿, 杨卫卫 2009-01-01 北京:科学出版社

Journal Papers

正在投稿中

[131] X.Y. Tang, W.W. Yang*, J.C. Li, L.X. Liang, Y.W. Lin, Y. L. He, A new optimal design strategy for deformable petal heliostat field of concentrated solar power via multi-algorithm filtering, Renewable Energy

[130] X.Y. Tang, W.W. Yang*, J.R. Zhang, Y.W. Lin, W.X. Yang, Stable and Efficient Hybrid Controller of Solar Thermal Membrane Reactor based on Machine Learning and Multi-objective Optimization, Energy

[129] X. Ma, W.W. Yang*, J.R. Zhang, L.X. Liang, Dynamic Trapping of Co0.1Ce0.1Ni0.8 by Ti3C2 MXene/g-C3N4 Composite for Efficient and Ordered Energy Conversion in Photo-Thermal-Driven Methane Dry Reforming, Renewable Energy

[128] J.W. Su, X.Y. Tang, X.S. Bai, W.W. Yang*, J.F. Zhang, Z.G. Qu, Review on thermal design and thermal management for metal hydride reactors: current status and future development, International Journal of Hydrogen Energy

[127] M.F. Li, Z. Liu, W.W. Yang*, Y.W. Lin, K.F. Ji, Z.Y. Jiang**, Multi-objective optimization of hybrid battery thermal management design with considering thermal runaway propagation prevention, Applied Thermal Engineering.

[126] Jia-Rui Zhang, Zhao Liu, Fei Xiao, Wei-Wei Yang*, Jian-Fei Zhang, Zhi-Guo Qu**Jiang-Tao Wu, Sobol Global Sensitivity Analysis of Oxygen Transport Processes in a Proton Exchange Membrane Fuel Cell with Order-structured Catalyst Layer, Electrochimica Acta

[125] Zhao Liu, Wei-Wei Yang*, Fei-Xiao, Li-Dong Song, Jian-Fei Zhang, Zhi-Guo Qu**, Steady-state Performance and Dynamic Response Characteristics of a Proton Exchange Membrane Fuel Cell with Dual-gradient Pt distribution in Catalyst Layer. Journal of Power Sources

​​2025年度

[124]W.W. Yang*, X.Y. Tang, X. Ma, X.K. Cao, Y.L. He, Synergistic Intensification of Palladium-based Membrane Reactors for Hydrogen Production: A review, Energy Conversion and Management, 325(2025)119424.

[123] X. Ma, W.W. Yang*, J.R. Zhang, X.Y. Tang, Structural evolution of Ni-Ce bimetallic alloy on Al203 support in methane dry reforming: achieving  sustainability and high-efficiency reaction through cerium modulation strategy, Fuel, 384(2025)134084

[122] Z. Liu, W.W. Yang*, J.R. Zhang, Y.W. Lin, J.F. Zhang, Z.G. Qu**, Gradient catalyst layer design for low-Pt-loading PEM fuel cell based on artificial neural network and multi-objective optimization, International Journal of Hydrogen Energy, 2025, Accepted.

​​2024年度

[121] W.W. Yang*, R.Z. Zhang, M.Y. Lu, Y.W. Lin, L.X. Liang, Q. Xu*, Novel flow field design for redox flow battery using algorithmic channel generation and self-adaptive network model and experimental verficiation, Chemical Engineering Journal, 499(2024)156346. 

[120] X. Ma, X.Y. Tang, W.W. Yang*, Y.L. He, Solar-driven methanol steam reforming for low carbon and efficient hydrogen production: A review, Journal of Cleaner Production, 436(2024)140587.   (入选ESI高被引论文)

[119] X.Y. Tang, W.W. Yang*, X. Ma, Y.L. He, Bionic Leaf-inspired Catalyst Bed Structure for Solar Membrane Reactor Aiming at Efficient Hydrogen Production and Separation, Applied Energy, 355(2024)122281. 

[118] X. Ma, W.W. Yang*, J.W. Su, L.X. Liang, W.X. Yang, Y.L. He, Enhancing carbon dioxide conversion in methane dry reforming multistep reactions through transformation of active species on catalyst surface, Energy, 290(2024)130279.

[117] X.S. Bai, J.W. Su, Z. Liu, Z.G. Qu, W.W. Yang*, Heat Transfer optimization for MH reactor using combined Taguchi design and data-driven optimization method, Energy, 307(2024)132689.  

[116] J.C. Li, M.Y. Lu, W.W. Yang*, R.Z. Zhang, J.W. Su, Q. Xu, Development of high-performance and ultra-stability hierarchical nested-network-pore carbon electrode for vanadium redox flow batteries, Journal of Energy Storage, 97(2024)112987 

[115] R.Z. Zhang, M.Y. Lu, W.W. Yang*, L.X. Liang, Q. Xu, Validation of 3D Multi-physics Equivalent Resistance Network Model with Flow Field Feature for VRFB Stack and Battery Scale-up Analysis, Journal of Energy Storage, 90(2024)111768. 

[114] K.R. Zhang, X.Y. Tang, W.W. Yang*, J.C. Li, R.Z. Zhang, Back propagation neural network based proportional-integral hybrid control strategy for a solar methane reforming reactor, International Journal of Hydrogen Energy, 49(2024)1258-1271. 

[113] Y.J. Yang, Z. Liu, R.Z. Zhang, J.R. Zhang, X. Ma, W.W. Yang*, Design optimization of a molten-salt heated methane/steam reforming membrane reactor by universal design analysis and techno-economic assessment, International Journal of Hydrogen Energy, 69(2024)1236-1245. 

[112] X.Y. Tang, W.W. Yang*, Z. Liu, J.C. Li, X. Ma, Deep learning performance prediction of solar-thermal-driven hydrogen production membrane reactor via Bayesian optimized LSTM network, International Journal of Hydrogen Energy, 82(2024)1402-1412.

[111] X. Ma, X.Y. Tang, W.W. Yang*, Y.L. He, Efficient catalysis and products regulation of methane dry reforming under mild temperature conditions using novel high-entropy catalyst, Fuel, 372(2024)132263.     

[110] L. Rong, X.S. Bai, J.C. Li, R.Z. Zhang, W.W. Yang*, Design and optimization of a hybrid cooling configuration combining PCM and liquid cooling for Li-ion battery uing data-based response surface approximation model, Applied Thermal Engineering, 245(2024)122844.

[109] X.S. Bai, X. Ma, W.W. Yang*, R.Z. Zhang, F.S. Yang, Modification of heat transfer concentrating model for the effective heat conductivity of particle beds within the full range of heat conductivity ratio, Powder Technology, 431(2024)119050.

[108]  C. Yin, M.Y. Lu*, Q. Ma, H.N. Su, W.W. Yang*, Q. Xu*, A comprehensive flow-mass-thermal-electrochemical coupling model for VRFB stack and its application in stack temperature control strategy, Batteries, 10(2024)347.

[107] H.C. Zhu, C. Yin, M.Y. Lu, Z. Li, Q. Ma, H.N. Su, W.W. Yang*, Q. Xu*, A critical review on operating paramter monitoring/estimation, battery management and control system for redox flow batteries, Journal of Energy Storage, 102(2024)114029.

[106] M.Y. Lu, Y. Chen, Q. Ma, H.N. Su, Q. Lu, Z.Q. Dai, W.W. Yang*, Q. Xu*, Flow field structure design for vanadium redox flow battery: Developments and Prospects, Journal of Energy Storage, 95(2024)112303.  

2023年度
[105] X.Y. Tang, W.W. Yang*, X. Ma, Y.L. He, Synergistic enhancement of reaction and separation for a solar membrane reactor by topolopy optimization of catalyst bed, Chemical Engineering Journal, 472(2023)145123. 

[104] W.W. Yang*, X.Y. Tang, X. Ma, Y.J. Yang, P.Y. Dou, Y.L. He, Theoretical analysis of a solar membrane reactor with enhanced mass transfer by using helical inserts, Energy Conversion and Management, 283(2023)116885. 

[103] W.W. Yang*, X. Ma, X.Y. Tang, P.Y. Dou, Y.J. Yang, Y.L. He, Review on developments of catalytic system for methanol steam reforming from the perspective of energy mass conversion, Fuel, 345(2023)128234.   

[102] W.W. Yang*, X.Y. Tang, X. Ma, J.C. Li, C. Xu, Y.L. He, Rapid prediction, optimization and design of solar membrane reactor by data-driven surrogate model, Energy, 285(2023)129432. 

[101]X.S. Bai, L. Rong, W.W. Yang*, F.S. Yang, Effective thermal conductivity of metal hydride bed: theoretical model and experimental validation, Energy, 48(2023)127085.

[100] Z.K. Zhang, M.Y. Lu, W.W. Yang*, J. C. Li, Q. Xu*, Design of parallel double-chain fibrous electrode using electrospinning technique for vanadium redox flow battery with boosted performance, Electrochimica Acta, 469(2023)143219. 

[99] X.Y. Tang, W.W. Yang*, X.Ma, X.K. Cao, An integrated modeling method for membrane reactors and optimization study of operating conditions, Energy, 268(2023)126730.

[98] X.Y. Tang, K.R. Zhang, W.W. Yang*, P.Y. Dou, Integrated design of solar concentrator and thermochemical reactor guided by optimal solar radiation distribution, Energy, 263(2023) 125828.

[97] T. Zhang, X.Y. Tang, W.W. Yang*, X. Ma, Comprehensive performance study on novel reflux solar methanol steam reforming reactor for hydrogen production, International Journal of Hydrogen Energy, 48(2023)879-893. 

[96] Y.J. Yang, W.W. Yang*, X. Ma, X.Y. Tang, X.K. Cao, Performance improvement of a solar volumetric reactor with passive thermal management under different solar radiation conditions, International Journal of Hydrogen Energy, 48(2023)20193-20207.

[95] W.W. Yang*, Y.J. Yang, X.Y. Tang, K.R. Zhang, J.C. Li, C. Xu, An adaptive P/PI control strategy for a solar volumetric methane/steam reforming reactor with passive thermal management, Chemical Engineering Science, 281(2023)119005.

[94] P.Y. Dou, W.W. Yang*, X.Y. Tang, X. Ma, J.C. Li, Topology optimization of catalysts porosity distribution in a solar steam methane reforming reactor towards improved methane conversion and hydrogen yield, Chemical Engineering Science, 281(2023)119200.

[93] P.Y. Dou, X.Y. Tang, W.W. Yang*, Y.L. He, Design of a multi-inlet solar thermochemical reactor for steam methane reforming with improved performance. Energy Storage and Saving, 2(2023)403-414.

[92] M. Ye, L. Rong, X. Ma, W.W. Yang*, Numerical optimization of triple-phase components in order-structured cathode catalyst layer of a proton exchange membrane fuel cell, Energies, 16(2023)1623. 

[91] Z.Q. Dai, X. Ma, X.Y. Tang, R.Z. Zhang, W.W. Yang*, Solar-thermal-chemical integrated design of a cavity-type solar-driven methane dry reforming reactor, Energies, 16(2023)2781.

[90] H.T. Hou, R.P. Yang, Q. Ma, Z. Li, H.N. Su, P. Lu, W.W. Yang*, Q. Xu*, Modeling and simulation of non-aqueous redox flow batteries: A mini-review, Batteries, 9(2023)215.  

[89] R.P. Zhang, H.T. Zhou, Q. Ma, Z. Li, M.Y. Lu, H.N. Su, W.W. Yang*, Q. Xu*, Numerical optimization of magnetic field application scheme for deep eutectic solvent electrolyte flow battery, Journal of Power Sources, 586(2023)233683.

2022年度及以前

[88] X.S. Bai, W.W. Yang*, Y.J. Yang, K.R. Zhang, F.S. Yang, Multi-variable optimization of metal hydride hydrogen storage reactor with gradient porosity metal foam and evaluation of comprehensive performance, International Journal of Hydrogen Energy, 47(2022) 35340-35351.

[87] Z.Q. Dai, Y.J. Yang, X.Y. Tang, L. Rong, W.W. Yang*, A thermochemical reactor design with better temperature management and improved performance for methane/carbon dioxide dry reforming,  International Journal of Hydrogen Energy, 47(2022)34794-34809.

[86] M.Y. Lu, W.W. Yang*, Z.K. Zhang, Y.J. Yang, Q. Xu, Lead-modified graphite felt electrode with improved VO2+/VO2+ electrochemical activity for vanadium redox flow battery, Electrochimica Acta, 428(2022)140900.

[85] X.Y. Tang, P.Y. Dou, Z. Q. Dai, W.W. Yang*, Structural design and analysis of a solar thermochemical reactor partially filled with phase change material based on shape optimization, Solar Energy, 236(2022)613-625.

[84] X.Y. Tang, W.W. Yang*, Z.Q. Dai, Y.J. Yang, Inverse design of local solar flux distribution for a solar methanol reforming reactor based on shape optimization, Frontier in Energy Research, 10(2022)881822.

[83] W.Y. Zhang, W.W. Yang*, Y.H. Jiao, D.W. Zhang, Numerical study of periodical cosine vibration effects on the heat transfer and fluid flow of internal turbulent flow, International Journal of Thermal Science, 173(2022)107367.

[82] Y. H. Jiao, M.Y. Lu, W.W. Yang*, X.Y. Tang, M. Ye, Q. Xu, A 3D macro-segment network model for vanadium redox flow battery with serpentine flow field, Electrochimica Acta, 403(2022)139657.

[81] Y.H. Jiao, Z.K. Zhang, P. Y. Dou, Q. Xu, W.W. Yang*, Consistency analysis and resistance network design for vanadium redox flow battery stacks with a cell-resolved model, International Journal of Green Energy, 19(2022)2023885.

[80] X.S. Bai, W.W. Yang*, X. Y. Tang, Z.Q. Dai, F.S. Yang, Parametric optimization of fin-metal foam composite metal hydride bed towards enhanced absorption performance of metal hydride hydrogen storage device, Energy, 243(2022)123044.

[79] P. Lu, P.Z.  Sun, Q. Ma, H.N. Su, P. Leung, W.W. Yang*, Q. Xu*, Rationally designed ternary deep eutectiv solvent enabling higher performance for non-aqueous redox flow batteries. Processes, 10(2022)649. 

[78] P.Z. Sun, R.P. Zhang, H.T. Zhou, Q. Ma, W.Q. Zhang, H.N. Su, W.W. Yang*, Q. Xu*, Effect of external ultrasonic field on the performance of an iron-vanadium flow battery with non-aqueous deep eutectic solvent (DES) electrolyte, International Journal of Energy Research, 46(2022)1-14.

[77] R.P. Zhang, H.T. Zhou, P.Z. Sun, Q. Ma, M.Y. Lu, H.N. Su, W.W. Yang*, Q. Xu*, Research progress on nanaparicles applied in redox flow batteries (RFBs), Battery Energy, 2022,1:20220023. 

[76] X.S. Bai, W.W. Yang*, X.Y. Tang, F.S. Yang, Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study, Energy, 220(2021)119738.

[71] M.Y. Lu, Y.H. Jiao, X.Y. Tang, W.W. Yang*, M. Ye, Q. Xu, Blocked serpentine flow field with enhanced species transport and improved flow distribution for vanadium redox flow battery, Journal of Energy Storage, 35(2021)102284.

[75] M.Y. Lu, W.W. Yang*, X.Y. Tang, Y.H. Jiao, M. Ye, Q. Xu,  Asymmetric structure design of a vanadium redox flow battery for improved battery performance, Journal of Energy Storage, 44(2021)103337. 

[74] X.Y. Tang, W.W. Yang*,Y. Yang, Y.H. Jiao, T. Zhang, A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution,  Energy, 229(2021)120749.

[73] X.S. Bai, W.W. Yang*, X.Y. Tang, F.S. Yang et al., Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels, Energy, 232(2021)121101.

[72] P. Lu, P. Leung, H.N. Su, W.W. Yang*, Q. Xu*, Materials, performance, and system design for integrated solar flow batteries-A mini review, Applied Energy, 282(2021)116210.

[71] J. C Xu, R. Cheng, J. J. Zhang, P. Leung, Q. Ma, H.N. Su, W.W. Yang*, Q. Xu*, Facile segmented graphite felt electrode for iron-vanadium redox flow batteries with deep eutectic solvent (DES) electrolyte, Journal of Power Sources, 483(2021) 229200.

[70] P.Z. Sun, J.C. Xu, Q. Ma, W.Q. Zhang, A.A. Shah, H.N. Su, W.W. Yang*, Q. Xu*, The influence and control of ultrasonic on the transport and electrochemical properties of redox couple ions in deep eutectic solvent(DES) for redox flow battery application, Electrochimica Acta, 394(2021) 139140.

[69] R. Cheng, P.Z Sun, H.N. Su, W.W. Yang, P. Leung, Q. Xu*, Effect of exerted magnetic field on the performance of non-aqueous iron-vanadium redox flow battery with deep eutectic solvent (DES) electrolyte, Electrochimica Acta, 399(2021)139404.

[68] W.W. Yang*, X.S. Bai, W.Y. Zhang, M.Y. Lu, Q. Xu, Numerical Examination of the Performance of a Vanadium Redox Flow Battery under Variable Operating Strategies, Journal of Power Sources, 457(2020)228002.

[67] M.Y. Lu, W.W. Yang*, Y.M. Deng, Q. Xu, An optimal electrolyte addition strategy for improving performance of a vanadium redox flow battery, International Journal of Energy Research, 44(2020)2604-2616.

[66] X.S. Bai, W.W. Yang*, W.Y. Zhang, F.S. Yang, X.Y. Tang, Hydrogen absorption performance of a novel cylindrical MH reactor with combined loop-type finned tube and jacket cooling system, Int. J. Hydrogen Energy, 45(2020)28100-28115.

[65] W.Z. Li, W.W. Yang*, N. Wang, Y.H. Jiao, Y. Yang, Z.G. Qu, Optimization of the Blocked Channel Design for a Proton Exchange Membrane Fuel Cell by Coupled Genetic Algorithm and Three-dimensional CFD modeling, Int. J. Hydrogen Energy, 45(2020)17759-17770.

[64] M.Y. Lu, Y.M. Deng, W.W. Yang*, M. Ye, Y.H. Jiao, Q. Xu, A Novel Rotary Serpentine Flow Field with Improved Electrolyte Penetration and Species Distribution for Vanadium Redox Flow Battery, Electrochimica Acta, 361(2020) 137089.

[63] J.C. Xu, Q. Ma, L. Xing , H.H. Li , P.K. Leung, W.W. Yang*, H.N. Su, Q. Xu*, Modeling the effect of temperature on performance of an iron-vanadium redox flow battery with deep eutectic solvent (DES) electrolyte, Journal of Power Sources, 449(2020) 227491.

[62] P. Lu, L.Y. Qin, P. Balakrishnan, Q.Ma, H.N. Su, W.W.Yang*, Q.Xu* The effect of additive supporting electrolytes on transport and electrochemical properties of deep eutectic solvent (DES) applied in non-aqueous redox flow batteries, Ionics, 26(2020) 5029-5036.

[61] R. Cheng, J.C. Xu, X.Y. Wang, Q. Ma, H.N. Su, W.W. Yang*, Q. Xu*, Electrochemical characteristics and transport properties of V(II)/V(III) redox couple  in a deep eutectic  solvent: Magnetic field effect ,  Frontiers in Chemistry,  8(2020)619. 

[60] Q. Ma, L. Xing, H.N Su, W.Q. Zhang, W.W. Yang, Q. Xu*, Numerical investigation on the dispersion effect in VRFBs, Chemical Engineering Journal, 2020, 393(1)124753.

[59] Q. Ma, L.J. Zhao, J.C. Xu, H.N. Su, W.Q. Zhang, W.W. Yang, Q. Xu, Pore-scale investigation of reactive transfer process in a deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery, Electrochimica Acta, 353(2020)136486.

[58] M.Y. Lu, W.W. Yang*, Y.M. Deng, W.Z. Li, Q. Xu*, Y.L. He, Mitigating Capacity Decay and Improving Charge-Discharge Performance of a Vanadium Redox Flow Battery with Asymmetric Operating Conditions, Electrochimica Acta, 2019(309)283-299.

[57] W.Z. Li, W.W. Yang*, W.Y. Zhang, Z.G. Qu, Y.L. He, Three-dimensional modeling of a PEMFC with serpentine flow field incorporating the impacts of electrode inhomogeneous compression deformation, Int. J. Hydrogen Energy, 44 (2019) 22194-22209.

[56] M.Y. Lu, W.W. Yang*, X.S. Bai, Y.M. Deng, Y.L. He, Performance improvement of a vanadium redox flow battery with asymmetric electrode designs, Electrochimica Acta, 319 (2019) 210-226. 

[55] Q. Xu*, L.Y. Qin, Y.N. Ji, P.K. Leung, H.N. Su, F. Qiao, W.W. Yang*, A.A. Shah, H.M. Li, A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability, Electrochimica Acta, 293 (2019) 426-431.

[54] J.F. Zhang, L. Jia, W.W. Yang, J. Taler, P. Oclon, Numerical analysis and parametric optimization on flow and heat transfer of a microchannel with longitudinal vortex generators, International Journal of Thermal Science, 141(2019) 211-221.

[53] J.H. Jiang, Y.S. Li, J.R. Liang, W.W. Yang, X.L. Li. Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer. Applied Energy 252 (2019) 113431.

[52] D.W. Zhang, E.H. Jiang, C. Shen, J.J. Zhou, W.W. Yang, Y.L. He, Numerical analysis on thermoacoustic prime mover, Journal of Sound and Vibration, 463(2019) 114946.

[51] W.W. Yang*, F.Y. Yan, Z.G. Qu, Y.L. He, Effect of Various Strategies of Soc-dependent Operating Current on Performance of a Vanadium Redox Flow Battery, Electrochimica Acta, 259 (2018)772-782.

[50] Z. Ma, M.J. Li, W.W. Yang *, Y.L. He, General performance evaluation charts and effectiveness correlations for the design of thermocline heat storage system, Chemical Engineering Science, 185(2018)105-115.

[49] Z. Ma, W.W. Yang, M.J. Li, Y.L. He, High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions, Applied Energy, 230(2018)769-783.  

[48] Q. Wang, Z.G. Qu*, Z.Y. Jiang, W.W. Yang*, Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode, Applied Energy, 213(2018)293-305. 

[47] Q. Wang, Z.G. Qu*, Z.Y. Jiang, W.W. Yang*, Numerical study on vanadium redox flow battery performance with non-uniform compressed electrode and serpentine flow field, Applied Energy, 220(2018) 106-116. 

[46] S. Du, Y.L. He, W.W. Yang, Z.B. Liu, Optimization method for the porous volumetric solar receiver coupling genetic algorithm and heat transfer analysis, Int. J. Heat Mass Transfer, 1222018383-390.

[45] Y.P. Zhou, M.J. Li, W.W. Yang, Y.L. He, The effect of the full-spectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process, Applied Energy, 213(2018): 169-178.

[44] W.W. Yang*, X.Q. Cao, Y.L. He, F.Y. Yan, Theoretical study of a high-temperature heat pump system composed of a CO2 transcritical heat pump cycle and a R152a subcritical heat pump cycle, Applied Thermal Engineering, 120(2017)228-238.

[43] Z. Ma, W.W. Yang*, F. Yuan, B. Jin, Y.L. He*, Investigation on the thermal performance of a high-temperature latent heat storage system, Applied Thermal Engineering, 122 (2017) 579-592.

[42] W.W. Yang*, M. Y. Lu, Y.L. He, Performance study of an alkaline direct ethanol fuel cell with a reduced two-dimensional mass transport model, Int. J. Hydrogen Energy, 2016. 41(45):20693-20708.

[41] W.W. Yang*, Y.L. He, Y.S. Li, Performance Modeling of a Vanadium Redox Flow Battery during Discharging, Electrochimica Acta 155 (2015) 279-287.

[40] Y. Wang, Y.L. He, W.W. Yang, Z.D. Cheng, Numerical analysis of flow resistance and heat transfer in a channel with delta winglets under laminar pulsating flow, Int. J. Heat and Mass Transfer, 82 (2015)51-65.

[39] Y.S. Li, Y.L. He, W.W. Yang, A high-performance direct formate-peroxide fuel cell with palladium-gold alloy coated foam electrode, J. Power Sources, 278(2015)569-573.

[38] X.Q. Cao, W.W. Yang*, Y. L. He, F. Zhou, Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery, Applied Thermal Engineering, 71(2014)291–300.

[37] Y.L. He, D.W. Zhang, W.W. Yang et al, Numerical analysis on performance and contaminated failures of the miniature split Stirling cryocooler, Cryogenics, 59(2014)12-22.

[36] H. Xi, M.J. Li, Y.L. He, W.W. Yang, Y.S. Li, Parametric optimization of zeotropic mixtures used in low-temperature organic rankine cycle for power generation, Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, VOL3B(2014) V03BT26A008.

[35] D.W. Zhang, Y. L. He, W.W. Yang et al., Experimental visualization and heat transfer analysis of the oscillatory flow in thermoacoustic stacks, Experimental Thermal and Fluid Science, 46(2013) 221-231.

[34] D.W. Zhang, Y. L. He, W.W. Yang et al., Particle image velocimetry measurement on the oscillatory flow at the end of the thermoacoustic parallel stacks, Applied Thermal Engineering, 51 (2013)325-333. 

[33] Y.S. Li, Y.L. He, W.W. Yang, Performance characteristics of air-breathing anion exchange membrane direct ethanol fuel cellsInt. J. Hydrogen Energy, 38 (2013) 13427-13433.

[32] W.W. Yang, Y.L. He, Y.S. Li, Modeling of dynamic operating behaviors in a liquid-feed direct methanol fuel cell, Int. J. Hydrogen Energy, 37(2012) I8412-I8424.

[30] X.Y. Li, W.W. Yang, Y.L. He, T.S. Zhao, Z.G. Qu, Effect of anode micro-porous layer on species crossover through the membrane of the liquid-feed direct methanol fuel cells, Applied Thermal Engineering, 48(2012)392-401.

[29] Y.L. He, Z. Miao, W.W. Yang, Characteristics of heat and mass transport in a passive direct methanol fuel cell operated with concentrated methanol, Int. J. Hydrogen Energy, 208(2012)180-186.

[28] Y.L. He, Z. Miao, T.S. Zhao, W.W. Yang, Numerical study on the effects of the GDL structure on water crossover in a direct methanol fuel cell, Int. J. Hydrogen Energy, 37(2012) 4422-4438.

[27] Y.L. He, D. H. Mei, W. Q. Tao, W.W. Yang, H. L. Liu, Simulation of the parabolic trough solar energy generation system with organic Rankine cycle, Applied energy, 97(2012)630-641.

[26] W.W. Yang, T.S. Zhao, Q.X. Wu, Modeling of a passive direct methanol fuel cell operating with neat methanol, Int. J. Hydrogen Energy 36 (2011) 6899-6913.

[25] Q. Xu, T.S. Zhao, W.W. Yang, R. Chen, A flow field enabling operating direct methanol fuel cells with highly concentrated methanol, Int. J. Hydrogen Energy, 36 (2011) 6899-6913.

[24] Q.X. Wu, T.S. Zhao, W.W. Yang, Effect of the cathode gas diffusion layer on the water transport behavior and the performance of passive direct methanol fuel cells operating with neat methanol, Int. J. Heat & Mass Tran. 54 (2011) 1132-1143.

[23] Y.S. Li, T.S. Zhao, J.B. Xu, S.Y. Shen, W.W. Yang, Effect of the cathode micro-porous layer on performance of anion-exchange membrane direct ethanol fuel cells, J. Power Sources, 196(2011)1802-1807.

[22] T.S. Zhao*, W.W. Yang, R. Chen, C. Xu, Toward operating direct methanol fuel cells with highly-concentrated fuel,  J.  Power Sources 195 (2010) 3451.  (曾入选ESI高被引论文)

[21] Y.S. Li, T.S. Zhao, W.W. Yang, Measurements of water uptake and transport properties in anion-exchange membranes, Int. J. Hydrogen Energy 35 (2010) 5656-5665.

[20] J.B. Xu, T.S. Zhao, W.W. Yang, S.Y. Shen, Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells, Int. J. Hydrogen Energy 35 (2010) 8699-8706.

[19] J.B. Xu, T.S. Zhao, Y.S. Li, W.W. Yang, Synthesis and characterization of the au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells, Int. J. Hydrogen Energy 35 (2010) 9693-9700.

[18] E.D. Wang, T.S. Zhao, W.W. Yang, Poly (vinylalcohol)/3- (trimethylammonium) propyl- functionalized silica hybrid membranes for alkaline direct ethanol fuel cells,” International Journal of Hydrogen Energy 35 (2010) 2183-2189.

[17] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, Microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels, J. Micromech. Microeng. 20 (2010) 045014.

[16] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol, Int. J. Hydrogen Energy 35(2010) 10547-10555.

[15] W.W. Yang, T.S. Zhao, Numerical investigations of the effect of the membrane electrode assembly structure on water crossover in a liquid-feed direct methanol fuel cell, J. Power Sources 188 (2009) 433–446.

[14] W.W. Yang, T.S. Zhao, An approach for determining the liquid water distribution in a liquid-feed direct methanol fuel cell, J. Power Sources 190 (2009) 216–222.

[13] T.S. Zhao*, R. Chen, W.W. Yang, C. Xu, Small direct methanol fuel cells with passive supply of reactants, J. Power Sources 191 (2009) 185-202. (曾入选ESI高被引论文)

[12] T.S. Zhao*, C. Xu, R. Chen, W.W. Yang, Mass transport phenomena in direct methanol fuel cells, Progress in Energy and Combustion Science 35 (2009) 275-292. (曾入选ESI高被引论文)

[11] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, Effects of anode micro porous layers made of carbon powder and nanotubes on water transport in direct methanol fuel cells, J. Power Sources 191 (2009) 304-311.

[10] W.W. Yang, T.S. Zhao, Y.L. He, Modeling of coupled electron and mass transport in anisotropic PEM fuel cell electrodes, J. Power Sources 185 (2008) 765-775.

[9] W.W. Yang, T.S. Zhao, A transient two-phase mass transport model for liquid feed direct methanol fuel cells, J. Power Sources 85 (2008) 1131-1140.

[8] R. Chen, T.S. Zhao, W.W. Yang, C. Xu, Two-dimensional two-phase thermal model for passive DMFCs, J. Power Sources 175 (2008) 276-287.

[7] C. Xu, T.S. Zhao, W.W. Yang, Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells, J. Power Sources 178 (2008) 291-308.  (曾入选ESI高被引论文)

[6] W.W. Yang, T.S. Zhao, A two-dimensional, two-phase mass transport model for liquid-feed DMFCs, Electrochimica Acta 52 (2007) 6125-6140.

[5] W.W. Yang, T.S. Zhao, Two-phase mass transport model for DMFCs with the effect of non-equilibrium evaporation and condensation, J. Power Sources 174 (2007) 136-147.

[4] W.W. Yang, T.S. Zhao, C. Xu, Three-dimensional two-phase mass transport model for direct methanol fuel cells, Electrochimica Acta.53 (2007) 853-862.

[3] C.Y. Du, T.S. Zhao, W.W. Yang, Effect of Methanol Crossover on the Cathode Behavior of a DMFC: A Half-Cell Investigation, Electrochimica Acta 52(2007) 5266-5271.

[2] Y.L. He, C.F. Zhao, W.J. Ding, W.W. Yang, Two-dimensional numerical simulation and performance analysis of tapered pulse tube refrigerator, Applied Thermal Engineering, 27 (2007)1876-1882.

[1] Y.L. He, W.W. Yang, W.Q. Tao, Three-dimensional numerical study of natural convective heat transfer of liquid in a cubic enclosure, Numerical Heat Transfer Part A: Applications 47(2005) 917-934.

 

国内核心期刊:

马旭,杨卫卫*,光热驱动甲烷在Ni@SrTiO3催化剂上高效转化与积碳抑制策略,洁净煤技术2024, 30(12): 83−94.

李伟卓,闫飞宇,邓一鸣,杨卫卫*,李印实, PEMFC阴极流道中阻块高度的敏度分析与优化,工程热物理学报202041(3):697-703.

何雅玲,严俊杰,杨卫卫,李印实,陶于兵,分布式能源系统中能量的高效存储,中国科学基金202034: 272-280

闫飞宇, 李伟卓, 杨卫卫*, 何雅玲,基于Bagging集成神经网络模型的燃料电池性能预测方法,中国科学:技术科学, 2019, 49:391-401.

杨卫卫* 周福,闫飞宇,何雅玲,余热回收利用的高温热泵系统混合工质选择研究,工程热物理学报 2017 , 38 (5) :907-913.

周福,杨卫卫*,曹兴起,何雅玲,三种高温热泵混合工质的理论研究,工程热物理学报2015 , 36(4) :703-708.

杨卫卫*,曹兴起,周福,何雅玲,从T-Q图分析几种余热回收方式的性能,工程热物理学报, 2015 , 36 (10) :2107-2110.

杨卫卫*,曹兴起,何雅玲,周福, 一种带中间换热器的双热源高温热泵系统, 西安交通大学学报 2014 , 48 (11) :70-74.

曹兴起,赵晖,杨卫卫*,何雅玲,周福,一种实现低品位余热与LNG冷能综合利用的复合循环系统, 热力发电 2014 , 12 :49-55

杨卫卫,李印实,何雅玲,直接甲醇燃料电池瞬态特性的数值模拟研究,工程热物理学报 2013 , 34 (6) :1118-1122.

杨卫卫,何雅玲,黄竞,赵春风,陶文铨,多孔材料强化管内对流换热的数值研究,工程热物理学报2007281: 104-106.

何雅玲,杨卫卫,赵春风,陶文铨,脉动流动强化换热的数值研究,工程热物理学报2005263: 495-497. 

杨卫卫,何雅玲,陶文铨,赵春风,凹槽通道中脉动流动强化传质的数值研究,西安交通大学学报20043811: 1119-1122.

杨卫卫,何雅玲,徐超,陶文铨,平直通道中脉动流动的数值模拟研究,西安交通大学学报2004389: 935-928.

杨卫卫,何雅玲,徐超,陶文铨,二维方腔非稳态自然对流的数值模拟研究,工程热物理学报2004252: 281-284.

宋秉烨,李印实,杨卫卫,何雅玲.自呼吸碱性直接葡萄糖燃料电池研究. 工程热物理学报201536(3)568-571.

赵春凤,何雅玲,丁文静,杨卫卫,陶文铨,渐缩型锥形脉管制冷机的二维数值模拟,工程热物理学报, 20062):199-201.

徐超,何雅玲,杨卫卫,陶文铨,流体静态和动态平衡特性的分子动力学模拟,工程热物理学报2004255:725-728.

Patents

[1] 杨卫卫,唐鑫源,白晓帅,焦宇航,阳昱,叶苗,一种二次聚光反射-均匀热流槽式太阳能集热器,发明专利,专利号:ZL 202010681591.9,授权日期: 2021-09-07.

[2] 杨卫卫,白晓帅,杨福胜,刘家璇,一种翅片与环路式冷却系统耦合的储氢反应器,发明专利,专利号:ZL201911311465.8,授权日期:2021.02.19.

[3] 杨卫卫,白晓帅,唐鑫源,戴舟桥,叶苗,杨福胜,一种复合翅片与金属泡沫的耦合套管储氢反应器,专利号:ZL202110819973.8,授权日期:2022.08

[4] 杨卫卫,梁琨, 白晓帅,一种耐堵塞波纹板式余热采集器,实用新型,专利号:ZL202122275510.8, 授权日期:2022.07.01

[5] 杨卫卫,窦培原,唐鑫源,白晓帅,张凯然,一种基于强化预热的锥形太阳能甲烷重整反应器,发明专利,专利号:ZL202210682371.7,授权日期:2023.06.19.

[6] 杨卫卫,杨永健,唐鑫源,窦培原,白晓帅,一种优化能量分配策略的被动热管理式太阳能高温反应器,发明专利,专利号:ZL 202211034976.1,授权日期:202308.22.

[7] 杨卫卫,唐鑫源,白晓帅,一种基于热力学平衡的产物分离膜反应器的一体化建模方法,发明专利,申请号:2022108996157,申请日期:2022-07-28.

[8] 杨卫卫,唐鑫源,马旭,一种具有仿生叶片催化床孔隙结构的高效膜反应器,发明专利,申请号:202310854622X,申请日期:2023-07-12.

[9] 杨卫卫,马旭,唐鑫源,一种用于甲烷重整反应的光热过渡金属碳化物基催化剂,发明专利,申请号:202410511269.X, 申请日期:2024-04-26.

[10] 何雅玲, 汤松臻, 刘占斌, 于洋, 谢涛, 杨卫卫,一种移动床高温煅烧反应的模拟实验装置及测试方法,发明专利,专利号:ZL201811354910.4,授权日期:2020.08.25,申请日期:2018.11.14.

[11] 何雅玲,杜燊,李明佳,杨卫卫,刘占斌. 一种多孔介质太阳能吸热器结构和运行参数优化方法. 发明专利. 专利号:ZL 201710828897.0,授权日期:2019.07.23,申请日2017.09.14.

[12] 何雅玲,韩辉,李明佳,杨卫卫,王煜. 一种用于余热回收的椭圆管H型翅片换热器. 发明专利. 专利号:ZL 201310354388.0,授权日期:2015.07.01,申请日:2013.08.14.

[13] 何雅玲,黄竞,杨卫卫,高凡,陶文铨. 多孔介质内交变流动和换热计算软件. 软件著作权,2008SR05669.

[14] 何雅玲,陶文铨,丁文静,黄竞,杨卫卫等. 交变流动和换热计算软件. 软件著作权,2008SR05668.