Blank1

[1] Yinshi Li, 2018, Challenges and Perspectives in Alkaline Direct Ethanol Fuel Cells, Anion Exchange Membrane Fuel Cells: Principles, Materials and Systems, Pages 325-346, Springer, ISBN: 978-3-319-71371-7.

 

[2] Yinshi Li, 2018, System Design and Performance in Alkaline Direct Ethanol Fuel Cells, Anion Exchange Membrane Fuel Cells: Principles, Materials and Systems, Pages 217-247, Springer, ISBN: 978-3-319-71371-7.

Blank7

[1] J.R. Liang, Y.S. Li*, R. Wang, J.H. Jiang. Cross-dimensional model of the oxygen transport behavior in low-Pt proton exchange membrane fuel cells. Chemical Engineering Journal 400 (2020) 125796.

 

 

[2] L. Li, H.J. Yu, Y.S. Li*, Y.L. He. Characteristics of the transient thermal load and deformation of the evacuated receiver in solar parabolic trough collector. Science China Technological Sciences 63 (2020) 1188-1201.

 

 

[3] R. Wang, Y.S. Li*, H.Y. Liu, Y.L. He, M.S. Hao. Sandwich-like multi-scale hierarchical porous carbon with highly hydroxylated surface for flow batteries. Journal of Materials Chemistry A 7 (2020) DOI:10.1039/D0TA10284A.

 

 

[4] L. Li, Y.S. Li*, Y.L. He. Flexible and efficient feedforward control of concentrating solar collectors. Applied Thermal Engineering 171 (2020) 115053.

 

 

[5] L. Li, Y.S. Li*, H.J. Yu, Y.L. He. A feedforward-feedback hybrid control strategy towards ordered utilization of concentrating solar energy. Renewable Energy 154 (2020) 305-315.

 

 

[6] R. Wang, Y.S. Li*. Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective. Energy Storage Materials 31 (2020) 230-251.

 

 

[7] R. Wang, Y.S. Li*, Y.N. Wang, Z. Fang. Phosphorus-doped graphite felt allowing stabilized electrochemical interface and hierarchical pore structure for redox flow battery. Applied Energy 261 (2020) 114369.Most Cited Articles

 

 

[8] Y.N. Wang, Y.S. Li*. Ab initio prediction of two-dimensional Si3C enabling high specific capacity as an anode material for Li/Na/K-ion batteries. Journal of Materials Chemistry A 8 (2020) 4274.

 

 

[9] J.L. Xue, Y.S. Li*, J. Hu. Nanoporous bimetallic Zn/Fe–N–C for efficient oxygen reduction in acidic and alkaline media. Journal of Materials Chemistry A 8 (2020) 7145.

 

 

[10] J.H. Jiang, Y.S. Li*, J.R. Liang, W.W. Yang, X.L. Li. Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer. Applied Energy 252 (2019) 113431.

 

 
 

[11] R. Wang, Y.S. Li*. Twin-cocoon-derived self-standing nitrogen-oxygen-rich monolithic carbon material as the cost-effective electrode for redox flow batteries. Journal of Power Sources 421 (2019) 139-146.Most Cited Articles

 

 
 

[12] R. Wang, Y.S. Li*, Y.L. He. Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: meeting improved electrochemical activity and enhanced mass transport from nano- to micro-scale. Journal of Materials Chemistry A 7 (2019) 10962-10970. (Front Cover / Hot Paper / Most Popular Articles

 

    
 

[13] L. Li, J. Sun, Y.S. Li*, Y.L. He, H.J. Xu. Transient characteristics of a parabolic trough direct-steam-generation process. Renewable Energy 135 (2019) 800-810.

 

 
 

[14] H.J. Xu, Y.S. Li*, J. Sun, L.Li. Transient model and characteristics of parabolic-trough solar collectors:Molten salt vs. synthetic oil. Solar Energy 182 (2019) 182-193.

 

 
 

[15] Q. Xu, Y.S. Li*, S.P. Deng, Y.L. He, L. Li, H.J. Yu. Modeling of Multiprocess Behavior for Feedstock-Mixed Porous Pellet: Heat and Mass Transfer, Chemical Reaction, and Phase Change. ACS Sustainable Chemistry Engineering 7 (2019) 12510-12519.

 

            
 

[16] Y.N. Wang, D.L. Sun, Y.S. Li*, S. Chen, B. Yu. Migration behaviors of leaky dielectric droplets with electric and hydrodynamic forces. Physical Review E 100 (2019) 033113. 

 

 

 

[17] X.D. Sun, Y.S. Li*. Highly Dispersed Palladium Nanoparticles on Carbon-Decorated Porous Nickel Electrode: An Effective Strategy to Boost Direct Ethanol Fuel Cell up to 202 mW cm−2ACS Sustainable Chemistry Engineering 7 (2019) 11186-11193.

 

            
 

[18] X.D. Sun, Y.S. Li*. Understanding mass and charge transports to create anion-ionomer-free high-performance alkaline direct formate fuel cells. International Journal of Hydrogen Energy 44 (2019) 7538-7543.

 

 
 

[19] X.D. Sun, Y.S. Li*, L. An, X.M. Lv. Comparative Performance Evaluation of Self-Basifying Direct Formate Fuel Cells. Journal of Electrochemical Society 2019, 166 (12) F768-F773. 

 

 
 

[20] Y.S. Li*, Y. Feng, X.D. Sun. Insight into Interface Behaviors to Build Phase-Boundary-Matched Na-Ion Direct Liquid Fuel Cells. ACS Sustainable Chemistry Engineering 6 (2018) 12827-12834.

 

      
 

[21] Y.S. Li*, Y. Feng, X.D. Sun, Y.L. He. A sodium-ion-conducting direct formate fuel cell: yielding electricity and base. Angewante Chemie International Edition 56 (2017) 5734-5737. (Inside Cover / Very Important Paper / Highlighted in ChemistryViews)

 

       
 

[22] Y.S. Li*, X.D. Sun, Y. Feng. Hydroxide-self-feeding high-temperature alkaline direct formate fuel cells. ChemSusChem 10;(2017) 2135-2139. (Inside Back Cover / Very Important Paper / Editors' Choice)

 

             
 

[23] L. Li, J. Sun, Y.S. Li*. Thermal load and bending analysis of heat collection element of direct steam-generation parabolic-trough solar power plant, Applied Thermal Engineering 127 (2017) 1530-1542.

 

 
 

[24] L. Li, Y.S. Li*, J. Sun. Prospective fully-coupled multi-level analytical methodology for concentrated solar power plants: Applications. Applied Thermal Engineering 118 (2017) 159-170.

 

 
 

[25] L. Li, J. Sun, Y.S. Li*. Prospective fully-coupled multi-level analytical methodology for concentrated solar power plants: General modelling. Applied Thermal Engineering 118 (2017) 171-187.

 

 
 

[26] Y.S. Li*, T.S. Zhao. A passive anion-exchange membrane direct ethanol fuel cell stack and its applications.  International Journal of Hydrogen Energy 41 (2016) 20336-20342.

 

               
 

[27] Y.S. Li*, Y.L. He. An All-in-One Electrode for High-Performance Liquid-Feed Micro Polymer Electrolyte Membrane Fuel Cells. Journal of Electrochemical Society 2016, 163 (7) F663-F667.

 

              
 

[28] Y.S. Li*, L.H. Lv, Y.L. He. A Monolithic Carbon Foam-Supported Pd-Based Catalyst towards Ethanol Electro-Oxidation in Alkaline Media. Journal of Electrochemical Society 163 (2016) F424-F427.

 

 
 

[29] Y.S. Li*. A liquid-electrolyte-free anion-exchange membrane direct formate-peroxide fuel cell.  International Journal of Hydrogen Energy 41 (2016) 3600-3604.

 

 
 

[30] Y.S. Li*, H. Wu, Y.L. He, Y. Liu, L. Jin. Performance of direct formate-peroxide fuel cells. Journal of Power Sources 287 (2015) 75-80. 

 

[31] Y.S. Li*, Y.L. He, W.W. Yang. A high-performance direct formate-peroxide fuel cell with palladiumegold alloy coated foam electrodes. Journal of Power Sources 278 (2015) 569-573.

 

 
 

[32] Y.S. Li*, Y.L. He, W.W. Yang. Layer reduction method for fabricating Pd-coated Ni foams as high-performance ethanol electrode for anion-exchange membrane fuel cells. Rsc Advance 4 (2014) 16879-16884.

 

 
 

[33] Y.S. Li, Y.L. He*, W.W. Yang. Performance characteristics of air-breathing anion-exchange membrane direct ethanol fuel cells. International Journal of Hydrogen Energy 38 (2013) 13427-13433.

 

            
 

[34] Y.S. Li, T.S. Zhao*. Ultra-low catalyst loading cathode electrode for anion-exchange membrane fuel cells. International Journal of Hydrogen Energy 37 (2012) 15334-15338.

 

[35]  Y.S. Li, T.S. Zhao*. Understanding the performance degradation of anion-exchange membrane direct ethanol fuel cells. International Journal of Hydrogen Energy37 (2012) 4413-4421.

 

[36] Y.S. Li, T.S. Zhao*, R. Chen. Cathode flooding behavior in alkaline direct ethanol fuel cells. Journal of Power Sources 196 (2011) 133-139.

 

[37] Y.S. Li, T.S. Zhao*, J.B. Xu, S.Y. Shen, W.W. Yang. Effect of the cathode micro-porous layer on performance of anion-exchange membrane direct ethanol fuel cells. Journal of Power Sources 196 (2011) 1802-1807.

 

[38] Y.S. Li, T.S. Zhao*. A high-performance integrated electrode for anion-exchange membrane direct ethanol fuel cell. International Journal of Hydrogen Energy 36 (2011) 7707-7713.

 

[39] Y.S. Li, T.S. Zhao*, W.W. Yang. Measurements of water uptake and transport properties in anion-exchange membranes. International Journal of Hydrogen Energy 35 (2010) 5656-5665.

 

[40] Y.S. Li, T.S. Zhao*, Z.X. Liang. Effect of polymer binders in the anode catalyst layer on performance of alkaline direct ethanol fuel cells. Journal of Power Sources 190 (2009) 223-229.

 

[41] Y.S. Li, T.S. Zhao*, Z.X. Liang. Performance of alkaline electrolyte-membrane based direct ethanol fuel cells. Journal of Power Sources 187 (2009) 387-392.

 

Blank9

1. Passive direct liquid fuel cell and its preparing mathod,United States Patent,Patent No.:US10205180B2

2. 一种被动式直接液体燃料电池及其制备方法,发明专利,授权号:ZL201510683882.0

3. 一种分布式燃料电池制冰装置及方法,发明专利,授权号:ZL201710184679.8

4. 一种蜂窝状腔极一体化燃料电池电极及其制备方法,发明专利,授权号:ZL201510438992.0

5. 一种紧凑式圆柱形离子交换膜燃料电池及其制备方法,发明专利,授权号:ZL201510437718.1

6. 一种流场梯级分布的一体化燃料电池电极及其制备方法,发明专利,授权号:ZL201510438357.2

7. 高电压离子交换膜燃料电池,发明专利,授权号:ZL201310278336.X

8. 内流场直接醇类燃料电池电极,发明专利,授权号:ZL201310278337.4

9. 一种核态池沸腾降噪减振节能的方法,发明专利,授权号:ZL201610279455.0