Basic Information

  

 

周玉洲

助理教授   硕士生导师

西安交通大学自动化学院

智能网络与网络安全教育部重点实验室

Research Fields

  • 系统优化理论、算法及应用

  • 清洁能源电力系统规划与运行优化

  • 信息物理融合能源系统

  • 混合整数规划理论及算法

Contact Information

通讯地址:

1. 中国西部科技创新港,泓理楼4-5052

2. 西安交通大学兴庆校区,科学馆247

 

邮箱:yzzhou@sei.xjtu.edu.cn

Brief Introduction

       周玉洲,西安交通大学自动化科学与工程学院助理教授,硕导,合作博导,管晓宏院士团队骨干成员,兼任四川数字经济产业发展研究院特聘研究员。目前为 IEEE 会员、IEEE Power & Energy Society会员、中国自动化学会会员以及10余家国内外权威学术期刊审稿人。

      主要从事信息物理融合优化、系统工程理论及应用研究,目前已在IEEE Trans. Smart Grid、IEEE Trans. Sustainable Energy、Applied Energy等能源电力领域的顶级期刊/会议上发表/录用高水平论文40余篇,申请发明专利10项,软件著作权6项,主持了包括国家自然科学基金项目、中国博士后科学基金等多项国家级/省部级/企业课题,作为技术骨干参与了包括国家重点研发计划项目在内的多项国家级课题,以及和国家电网公司、华为公司、中国电建集团、华能集团等单位合作的企业课题;入选中国科协“科技智库青年人才计划”、西安交通大学“青年优秀人才支持计划”;获得第七届徐宗本应用数学论文奖、西安交通大学优秀博士学位论文等荣誉奖励。

Educational& Work Experience

2022/09~至今        西安交通大学,自动化科学与工程学院,助理教授

2019/09~2020/09 美国斯蒂文斯理工学院,电气与计算机工程,联合培养博士研究生

2015/9~2021/09  西安交通大学,控制科学与工程,博士学位

2011/8~2015/07  西安交通大学,自动化专业,学士学位

Representative Papers

[1] Y. Zhou, J. Zhao, and Q. Zhai, “100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power,” Applied Energy, vol. 301, pp. 117441, 2021. (SCI, IF: 11.2)
[2] Y. Zhou, Q. Zhai, W. Yuan, et al., “Capacity expansion planning for wind power and energy storage considering hourly robust TCUC,” Applied Energy, vol. 302, pp. 117570, 2021. (SCI, IF: 11.2)
[3] Y. Zhou, Q. Zhai and L. Wu, “Optimal operation of regional microgrids with renewable and energy storage: solution robustness and nonanticipativity against uncertainties,” IEEE Transactions on Smart Grid, 2022. (SCI, IF: 9.6)
[4] Y. Zhou, Q. Zhai, M. Zhou, et al., “Generation scheduling of self-generation power plant in enterprise microgrid with wind power and gateway power bound limits,” IEEE Trans. Sustain. Energy, vol. 11, no. 2, pp. 758-770, April 2020. (SCI, IF: 8.8)
[5] Y. Zhou, Q. Zhai, and L. Wu, “Multistage transmission-constrained unit commitment with renewable energy and energy storage: implicit and explicit decision methods,” IEEE Trans. Sustain. Energy, vol. 12, no. 2, pp. 1032-1043, April 2021. (SCI, IF: 8.8)
[6] Y. Zhou, Z. Han, Q. Zhai, et al. “Multi-stage robust optimal economic accommodation method for renewable energy considering carbon emission cost, ” Energy Reports, vol. 9, pp. 1509-1519, 2023. (SCI, IF: 5.2)
[7] Y. Zhou, Q. Zhai, L. Wu, et al., “A data-driven variable reduction approach for fast unit commitment of large-scale systems,” J. MOD. POWER SYST. CLE., 2021. (SCI, IF: 6.3)
[8] Y. Zhou, Q. Zhai, Z Xu, L Wu, X Guan, “Multi-stage adaptive stochastic-robust scheduling method with affine decision policies for hydrogen-based multi-energy microgrid”, IEEE Trans. Smart Grid, 2023.
[9] Y. Zhou, Q. Zhai, L. Wu, et al., “On the evaluation of uncertainty cost and availability benefit of renewable energy,” 2020 IEEE PES General Meeting, pp. 1-7, 2020. (EI)
[10] Y. Zhou, Q. Zhai, X. Fu, et al. “Wind power capacity planning in enterprise's microgrid based on approximation expectation of operation cost,” 2019 IEEE PES General Meeting, pp. 1-5, 2019. (EI,)
[11] Y. Zhou, Q. Zhai, P. Li, “Optimal power transfer limit planning for energy-intensive industry microgrid considering economic accommodation of wind power,” 2019 IEEE ISGT-Asia, pp. 2914-2919, 2019. (EI)
[12] Y. Zhou, Q. Zhai, R. Huang, et al., “Solution method for long-term TCUC considering two modes of wind power curtailment,” 2019 Chinese Control Conference, pp. 2082-2087, 2019. (EI)
[13] Y. Zhou, Q. Zhai, X. Li, et al., “A method for recognizing electrical appliances based on active load demand in a house/office environment,” 2017 Chinese Automation Congress, pp. 3584-3589, 2017. (EI)
[14] Q Zhai, Y Zhou, et al., “Nonanticipativity and all-scenario-feasibility: state of the art, challenges, and future in dealing with the uncertain load and renewable energy,” Proceedings of the CSEE, vol. 40, no.20, pp. 6418-6432. . (EI)
[15] Hou J, Zhai Q, Zhou Y, et al. A Fast Solution Method for Large-scale Unit Commitment Based on Lagrangian Relaxation and Dynamic Programming[J]. IEEE Transactions on Power Systems, 2023. (SCI, IF: 5.2)