Publications

[28] Y. Liu,*,# W. Zhai,# P. Cui, L. Li, Z. Dai, B. Huang*, Energy-Induced Phase-Control Syntheses of Single-Phase NixRu1−x Solid Solutions and Active-Moderate-Sites Synergy in the Oxygen Evolution Reaction. Chem. Mater. 2024, 36, 8965–8975https://doi.org/10.1021/acs.chemmater.4c02027

 

[27] J. Wang*, Z. Song, M. He, Y. Qian, D. Wang, Z. Cui, Y. Feng, S. Li, B. Huang, X. Kong*, Jinming Han, Lei Wang*, Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting. Nat. Commun. 2024, 15, 2125. https://doi.org/10.1038/s41467-024-46439-w

 

[26] Y. Liu, Y. Qin, J. Gao and B. Huang*The Phase Control of Transition Metallic Elements via Facile Chemical and Physical Syntheses. Chem. Rec.2024, 24, e202300378https://doi.org/10.1002/tcr.202300378

 

[25] Z. Tan and B. Huang*.  Independent Multiple-Atom-Site Functionality in Composition Adjustable Immiscible Ru-Rh-Pd-Pt Solid-Solution High-Entropy Alloys for NOx Reduction Outperforming Rh. Angew. Chem. Int. Ed.2024, 63, e202400496https://doi.org/10.1002/anie.202400496

 

[24] W. Ali,* Y. Qin, N. A. Khan, H. Zhao, Y. Su, D. Ding,* B. Huang,* C. Wu, W. Hu, S. Ding.* Highly air-stable magnesium hydrides encapsulated by nitrogen-doped graphene nanospheres with favorable hydrogen storage kinetics. Chem. Eng. J. 2024, 480, 148163https://doi.org/10.1016/j.cej.2023.148163

 

[23] Z. Tan, M. Haneda, Y. Nishida, Q. Zhang, D. Wu, J. Cheng, H. Kitagawa and B. Huang.* Discovering Linear Descriptors for Activation Energy and Direct Hydrocarbon Dissociations by Dual-Atom Sites in Immiscible PdxPt1–x Solid Solutions. Chem. Mater. 2024, 36, 524–532https://doi.org/10.1021/acs.chemmater.3c02550

 

[22] W. Ali, X. Li, Y. Yang, N. Li, B. Huang,* C. Wu, and S. Ding.* In Situ Formed Ti/Nb Nanocatalysts within a Bimetal 3D MXene Nanostructure Realizing Long Cyclic Lifetime and Faster Kinetic Rates of MgH2ACS Appl. Mater. Interfaces, 2023, 15, 36167–36178. https://doi.org/10.1021/acsami.3c05308

 

[21] B. Huang,* Y. Liu, H. Kobayashi,* Z. Tan,* T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota, H. Zheng* and H. Kitagawa.* CuxRu1-x Catalysts for Carbon Neutralization with CH4 or CO Production. Chem Catal., 2023, 3, 100705

 

[20] J. Wang,* D. Wang, Z. Song, N. Jiang, S. Li, Y. Zhang,* B. Huang, Z. Cui, H. Zhou and L. Wang.* Efficient solar energy conversion via bionic sunlight-driven ion transport boosted by synergistic photo-electric/thermal effects. Energy Environ. Sci., 2023, 16, 3146-3157, DOI:10.1039/D3EE00720K

 

[19] H. Xin, L. Sun, Y. Zhao, Y. Lv, Q. Luo, S. Guo, D. Li, C. Mu, B. Huang,* F. Ma.* Size-controllable Rh2P nanoparticles on reduced graphene oxide toward highly hydrogen production. Chem. Eng. J. 2023, 466, 143277, DOI:/10.1016/j.cej.2023.143277

 

[18] Y. Liu, S. Liang, Z. Tan,* J. Cheng, B. Huang.* A one-step polyol method for well-dispersed and heavily-loaded Ir and Ru catalysts in hydrazine decomposition. New J. Chem., 2023, 47, 8974-8977 , DOI:10.1039/D2NJ05089G

 

[17] H. Xin,  L. Sun, Y. Zhao, Z. Dai, Q. Luo, S. Guo,  D. Li, Y. Chen, N. Ogiwara, H. Kitagawa, B. Huang,* F. Ma,* Surpassing Pt Hydrogen Production from {200} Facet-Riched Polyhedral Rh2P Nanoparticles by One-Step Synthesis. Appl. Catal. B: Environ. 2023, 330, 122645, DOI:10.1016/j.apcatb.2023.122645

 

[16] B. Huang,* Y. Liu, Z. Tan. Discovery of Low-Temperature Fe2O3 Reduction Route to Fe with Carbon via Fe-MOF-74 Decomposition. Chem. Comm.2022, 58, 1129611299, DOI: 10.1039/D2CC04334C

 

[15] Z. Tan, M. Haneda, H. Kitagawa, B. Huang.* Slow Synthesis Methodology-Directed Immiscible Octahedral PdxRh1-xDual-Atom-Site Catalysts for Superior Three-Way Catalytic Activities over Rh. Angew. Chem. Int. Ed.2022, 134, e202202588 10.1002/ange.202202588Hot Paper

 

[14] Z. Tan#, Y. Liu#B. Huang.* Highly Efficient Three-Solvent Methodology for Separating Colloidal Nanoparticles. Nanoscale 2022, 14, 5482−5487.

 

[13] B. Huang,* Z. Tan. Significantly Lowered Activation Energy in Proton Conductivity by Mg Substitution in Layered Ni Metal–Organic Framework. Dalton Trans. 2022, 51, 5203–5207.https://doi.org/10.1039/D2DT00288D

 

[12] B. Huang,* Z. Tan. High Loading of Air-Sensitive Guest Molecules into Polycrystalline Metal−Organic Framework Hosts. Inorg. Chem. 2021, 60, 10830−10836.https://doi.org/10.1021/acs.inorgchem.1c01580

 

[11] B. Huang,* Z. Tan. Host-Guest Interactions Between Metal–Organic Frameworks and Air-Sensitive Complexes at High Temperature. Front. Chem. 2021, 9:706942.https://doi.org/10.3389/fchem.2021.706942

 

[10] Z. Gan, C. Shu, C. Deng, W. Du, B. Huang,* W. Tang.* Confinement of Pt NPs by hollow-porous-carbon-spheres via pore regulation with promoted activity and durability in the hydrogen evolution reaction. Nanoscale, 2021, 13, 18273-18280. https://doi.org/10.1039/D1NR04982H

 

[9] H. Xin, Z. Dai,* Y. Zhao, S. Guo, J. Sun, Q. Luo, P. Zhang, L. Sun, N. Ogiwara, H. Kitagawa, B. Huang,* F. Ma*. Recording the Pt-beyond hydrogen production electrocatalysis by dirhodium phosphide with an overpotential of only 4.3 mV in alkaline electrolyte. Appl. Catal. B: Environ. 2021, 297, 120457. https://doi.org/10.1016/j.apcatb.2021.120457

 

[8] B. Huang,* H. Kobayashi, T. Yamamoto, S. Matsumura, Y. Nishida, K. Sato, K. Nagaoka, M. Haneda, S. Kawaguchi, Y. Kubota, H. Kitagawa.* Coreduction Methodology for Immiscible Alloy of CuRu Solid-Solution Nanoparticles with High Thermal Stability and Versatile Exhaust Purification Ability. Chem. Sci. 2020, 11, 11413-11418. https://doi.org/10.1039/D0SC03373AInside Front Cover

 

[7] F. Kang, L. Zhang,* B. Huang, P. Mao, Z. Wang, Q. Sun, J. Wang,* D. Hu. Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design. J. Euro. Cera. Soc. 2020, 40, 1198-1204https://doi.org/10.1016/j.jeurceramsoc.2019.12.026

 

[6B. Huang, H. Kobayashi,* T. Yamamoto, T. Toriyama, S. Matsumura, Y. Nishida, K. Sato, K. Nagaoka, M. Haneda, W. Xie, Y. Nanba, M. Koyama, F. Wang, S. Kawaguchi, Y. Kubota, H. Kitagawa.* A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity.  Angew. Chem. Int. Ed.2019, 58, 2230-2235, doi;10.1002/anie.201812325Frontispiece, Hot Paper

 

[5] B. Huang, H. Kobayashi, T. Yamamoto, S. Matsumura, Y. Nishida, K. Sato, K. Nagaoka, S. Kawaguchi, Y. Kubota, H. Kitagawa.* Solid-Solution Alloying of Immiscible Ru and Cu with Enhanced CO Oxidation Activity. J. Am. Chem. Soc. 2017, 139, 4643-4646. doi: 10.1021/jacs.7b01186

 

[4] B. Huang, H. Kobayashi,  H. Kitagawa,* Facile Synthesis of Small MgO Nanoparticles/Metal-Organic Framework Hybrid Material, Chem. Lett. 2014, 43, 1459-1460. https://doi.org/10.1246/cl.140429Editor's Choice

 

[3] Srikanth Boinapally, Bo Huang, Manabu Abe,* Claudine Katan,* Jun Noguchi, Satoshi Watanabe, Haruo Kasai, Bing Xue, and Takayoshi Kobayashi, Caged Glutamates with π‑Extended 1,2-Dihydronaphthalene Chromophore: Design, Synthesis, Two-Photon Absorption Property, and Photochemical Reactivity, J. Org. Chem.,2014, 79, 7822-7830. dx.doi.org/10.1021/jo501425p

 

[2] X. Zhao, Q. Ma, X. Zhang, B. Huang, Q. Jiang, J. Zhang, G. Shen, R. Yu.* A Highly Selective Fluorescent Sensor for Cu2+ Based on a Covalently Immobilized Naphthalimide Derivative. Anal. Sci., 2010, 26, 585-590. 

 

[1] Q. Ma, X. Zhang, Z. Han, B. Huang, Q. Jiang, G. Shen R. Yu.* A ratiometric fluorescent probe for zinc ions based on the quinoline fluorophore. Intern. J. Environ. Anal. Chem., 2011, 91, 74-86.