智能机床及其关键技术
项目编号 | 项目名称 | 项目来源 | 起讫时间 | 承担角色 | 项目类别 |
---|---|---|---|---|---|
2023YFB3408403 | 超大型转轮高性能加工工艺及多工位加工-测量协同专机研制 | 国家重点研发计划 高性能制造技术与重大装备专项 | 2023-12~2026-11 | 负责人 | 纵向项目 |
2023-YBGY-382 | 面向航空航天结构件高效加工的激光辅助铣削工艺参数匹配研究 | 陕西省重点研发计划 | 2023-01~2024-12 | 负责人 | 纵向项目 |
20220984 | 面向实际服役工况的变速箱齿轮设计与制造工艺优化 | 中国重汽集团济南动力有限公司 | 2022-09~2024-08 | 负责人 | 横向项目 |
P2022-A-IV-001-002 | 钛铝合金叶片类构件材料-结构-工艺一体化制造基础研究 | 航空发动机及燃气轮机基础科学中心项目 | 2022-06~2025-05 | 负责人 | 纵向项目 |
2018YFB1701901 | 零件加工过程数据与机理分析相结合的全流程装备加工性能预测 | 国家重点研发计划 网络协同制造和智能工厂专项 | 2019-6~ | 负责人 | 纵向项目 |
2019JC-08 | 应力波和挤压摩擦综合效应下的超高速铣削零件表面微观组织形成机制 | 陕西省杰出青年科学基金 | 2019-1~ | 负责人 | 纵向项目 |
2019121015KYPT001JC003 | 高效精密加工工艺及装备平台建设 | 高校重大科技创新平台项目 | 2019-07~2021-06 | 负责人 | 纵向项目 |
2017012 | MA700飞机主起支撑接头低应力切削和复合加工技术 | 企业横向课题 | 2017-3~2019-5 | 负责人 | 横向项目 |
51675417 | 航空结构件五轴高效铣削工艺知识获取及集成应用 | 国家自然科学基金项目 | 2017-1~ | 负责人 | 纵向项目 |
2017ZX04011015 | 航天飞航领域复杂弹体及发动机制造国产数控系统换脑工程 | 高档数控机床与基础制造装备国家科技重大专项 | 2017-1~ | 负责人 | 纵向项目 |
2014ZX04014-021 | 数控机床精度保持性技术研究 | 高档数控机床与基础制造装备科技重大专项 | 2014-1~ | 负责人 | 纵向项目 |
51375373 | 超高速铣削材料的应力波去除机理研究 | 国家自然科学基金项目 | 2014-1~ | 负责人 | 纵向项目 |
2013AA041108 | 用于切削等过程监测的微纳传感器与系统 | “863”高科技项目 | 2013-1~ | 负责人 | 纵向项目 |
51005175 | 基于子结构耦合的高速铣削稳定性快速判定 | 国家自然科学基金项目 | 2011-1~ | 负责人 | 纵向项目 |
20100201120005 | 高速稳定铣削的加工参数快速选取方法 | 国家教育部项目 | 2011-1~ | 负责人 | 纵向项目 |
20100481333 | 高速铣床刀具系统稳定性的在线预测 | 中国博士后科学基金 | 2011-1~ | 负责人 | 纵向项目 |
2011ZX04016 | 高速/复合数控机床及关键技术创新能力平台 | “高档数控机床与基础制造装备”科技重大专项 | 2011-1~ | 骨干成员 | 纵向项目 |
2011ZX04016 | 高速高效加工工艺及装备技术创新平台 | “高档数控机床与基础制造装备”科技重大专项 | 2011-1~ | 骨干成员 | 纵向项目 |
2010ZX04014-015 | 精密机床精度保持性技术研究 | “高档数控机床与基础制造装备”科技重大专项 | 2010-1~ | 骨干成员 | 纵向项目 |
2010 | 数控制造装备战略发展研究 | 中国工程院咨询项目 | 2010-1~ | 骨干成员 | 纵向项目 |
专利名称 | 申请号 | 专利类型 | 申请日期 |
---|---|---|---|
一种超密齿面铣刀的设计方法 | 201310185507.4 | 发明 | 2013.05.17 |
一种频响特性快速获取的铣刀等效模型建立方法 | 201210047187.1 | 发明 | 2012.08.01 |
一种切削加工中进给速度的优化方法 | 201110067451.3 | 发明 | 2011.10.06 |
一种用于安装刀塔的滑移台装置 | 201110077437.1 | 发明 | 2011.04.01 |
一种超重型机床的工件支持系统 | 201110079505.8 | 发明 | 2011.02.07 |
面向血管支架结构设计的血液流动特性测试装置 | 200810150613.8 | 发明 | 2010.06.16 |
一种高速铣削稳定性快速判定方法 | 201010235203.0 | 发明 | 2010.01.01 |
一种微尺度迷宫型单元流道水力性能测试方法 | 200710006605.1 | 发明 | 2009.08.19 |
微尺度迷宫型单元流道水力性能测试装置 | 200710006606.6 | 发明 | 2009.03.11 |
微尺度迷宫型单元流道的制造及水力性能测试方法和装置 | 200410073262.7 | 发明 | 2008.09.03 |
2023年
[1] Baochen Li, Hongguang Liu, Jun Zhang, Binbin Xu, Wanhua Zhao. Multi-mechanism-based twinning evolution in machined surface induced by thermal-mechanical loads with increasing cutting speeds. International Journal of Machine Tools & Manufacture, 2023, 192:104074
[2] Tang YY, Zhang J*, Hu WX, et al. Prediction of surface location error considering the varying dynamics of thin-walled parts during five-axis flank milling [J]. Processes. 2023, 11:242.
[3] Tang YY, Zhang J*, Tian H, et al. Optimization method of spindle speed with the consideration of chatter and forced vibration for five-axis flank milling [J]. The International Journal of Advanced Manufacturing Technology. 2023, 125: 3159-3169.
[4] Lele Bai, Hongguang Liu, Jun Zhang*, et al. Real-time tool breakage monitoring based on dimensionless indicators under time-varying cutting conditions. Robotics and Computer-Integrated Manufacturing, 2023, 81, 102502.
[5] Binbin Xu, Jun Zhang*, Xin Liu, Hongguang Liu, Wanhua Zhao. Fully coupled thermomechanical simulation of laser-assisted machining Ti6Al4V reveals the mechanism of morphological evolution during serrated chip formation. Journal of Materials Processing Technology. 2023, 315: 117925.
[6] Binbin Xu, Xin Liu, Hongguang Liu, Jun Zhang, Wanhua Zhao. A comparative study on modeling approaches towards laser-assisted machining. Procedia CIRP, 2023,117:26-31.
[7] 尹佳,唐宇阳,张俊,赵万华. 基于复合加工特征的航空结构件频响快速预测. 机械工程学报,2023,59(3):200-207.
2022年
[1] Liu Hongguang, Xu Xiang, Zhang Jun*, Liu Zhechao, He Yong, Zhao Wanhua, Liu Zhanqiang. The state of the art for numerical simulations of the effect of the microstructure and its evolution in the metal-cutting processes [J]. International Journal of Machine Tools & Manufacture, 2022, 177: 103890.
[2] Tianhang Pan, Jun Zhang, Xing Zhang, Wanhua Zhao, Huijie Zhang, Bingheng Lu. Milling force coefficients‑based tool wear monitoring for variable parameter milling. The International Journal of Advanced Manufacturing Technology, 2022, 120(3): 4565–4580.
[3] Yuyang Tang, Jun Zhang*, Huijie Zhang, Wanhua Zhao, Hongguang Liu. Generalized equivalent method for dynamics of multipocket thin-walled parts. International Journal of Advanced Manufacturing Technology, 2022, 120(3): 2731–2745.
[4] Yuyang Tang, Jun Zhang*, Jia Yin, Lele Bai, et al. Relative varying dynamics based whole cutting process optimization for thin-walled parts. Chinese Journal of Mechanical Engineering, 2022, 33, 145.
[5] Xiaowei Zheng, Huaguang Qiu, Yesheng Chen, Jun Zhang*, Wanhua Zhao. Finite strip dynamic modeling of thin-walled aircraft parts. Journal of Advanced Manufacturing Science and Technology. 2022, 2(4): 2022017.
[1] Xiang Xu; Jose Outeiro*; Jun Zhang*; Binbin Xu; Wanhua Zhao; Viktor Astakhov. Machining Simulation of Ti6Al4V using Coupled Eulerian-Lagrangian Approach and a Constitutive Model Considering the State of Stress. Simulation Modelling Practice and Theory, 2021,110:102312.
[2] Binbin Xu, JunZhang*, Hongguang Liu, XiangXu, Wanhua Zhao Serrated Chip Formation Induced Periodic Distribution of Morphological and Physical Characteristics in Machined Surface During High Speed Machining of Ti6Al4V. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2021, 143: 101006.
[3] Jun Zhang*, Zhechao Liu, Hongguang Liu, Xiang Xu, Jose Outeiro, Wanhua Zhao. Fragmented chip formation mechanism in high-speed cutting from the perspective of stress wave effect. CIRP Annals-Manufacturing Technology. 2021, 70: 53-56.
[4] Hongguang Liu, Jun Zhang*, Binbin Xu, Huijie Zhang, Wanhua Zhao. Whole process analysis of microstructure evolution during chip formation of high-speed machining OFHC copper. Journal of Manufacturing Processes. 66 (2021) 470–482.
[5] Hongguang Liu, Yue Xiao, Jun Zhang*, Xiang Xu, Zhechao Liu, Wanhua Zhao. Dynamic stress propagation induced transition of stress state and microstructure characteristics during high speed cutting of OFHC copper. The International Journal of Advanced Manufacturing Technology, 2021, 115: 2365–2378.
[6] Zhechao Liu, Jun Zhang*, Yong He, Wanhua Zhao. A Godunov-type discrete element model for elastic-viscoplastic continuum impact problems. International Journal for Numerical Methods in Engineering. 2021,1-21.
[7] 尹佳,安攀,张威振,张星,张俊,赵万华. 五轴机床刀尖点频响特性及切削稳定域的位置演变. 机床与液压,2021,49(18):22-27.
[8] 刘占, 张俊, 尹佳, 赵万华. 基于机器视觉的立铣刀几何与状态参数在机检测. 航空学报, 1-10.
[9] 栗世豪, 张俊, 唐宇阳, 尹佳, 赵万华. 零件加工误差与机床几何误差映射关系建模. 西安交通大学学报, 2021, 55(10): 50-59.
[10] Pan T , Zhang J , Yang L , et al. Tool breakage monitoring based on the feature fusion of spindle acceleration signal[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117: 2973–2986.
[11] W. Wei, J. Yin, J. Zhang, H. Zhang, Z. Lu, Wear and Breakage Detection of Integral Spiral End Milling Cutters Based on Machine Vision. Materials, 2021, 14, 5690, doi: 10.3390/ma14195690.
[1] Jun Zhang*, Xiang Xu, Jose Outerio, Hongguang Liu, Wanhua Zhao. Simulation of Grain Refinement Induced by High-Speed Machining of OFHC Copper Using Cellular Automata Method. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2020, 142: 091006.
[2] Hongguang Liu, Jun Zhang*, Binbin Xu, XiangXu, Wanhua Zhao. Prediction of microstructure gradient distribution in machined surface induced by high speed machining through a coupled FE and CA approach. Materials & Design, 2020, 109133.
[3] Xiang Xu, Jun Zhang*, José Outeiro*, Binbin Xu, Wanhua Zhao. Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining. Journal of Materials Processing Technology, 2020, 286: 116834.
[1] Wei Zhang, Xing Zhang, Zhang Jun, Wanhua Zhao. Analysis of lead screw pre-stretching influences on the natural frequency of ball screw feed system.Precision Engineering. 2019(57):30-44.
[2] Song Dongdong,Xue Fei,Zhang Jun,Zou, Cunfan,Zhao Wanhua,Lu Bingheng.Postprocessor algorithm and feedrate optimization for nine-axis milling machine tool with twin cutters.The International Journal of Advanced Manufacturing Technology.2019(103): 1745-1757
[3] 马梁栋,尹佳,安攀,张俊,高龙飞,赵万华. 基于SIGINI子程序的零件残余应力变形数值模拟研究. 工具技术,2019,53(8): 70-73.
[4] Xiang Xu, Jun Zhang*, Hongguang Liu, Yong He, Wanhua Zhao. Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V. Materials Science and Engineering: A. 2019, 752: 167-179.
[5] Yong He, Jun Zhang*, Tito Andriollo, Jesper Hattel, Wanhua Zhao. Investigation of the elastoplastic and fracture behavior of solid materials considering microstructural anisotropy: A discrete element modeling study. Computational Materials Science. 2019, 170: 109164.
[6] Hongguang Liu, Jun Zhang*, Xiang Xu, Yutong Qi, Zhechao Liu, Wanhua Zhao. Effects of dislocation density evolution on mechanical behavior of OFHC copper during high-speed machining. Materials, 2019,12, 2348.