基本信息


 

张猛

博士,副教授,硕士生导师

联系方式

西安交通大学

能源与动力工程学院

汽车工程系

动力工程多相流国家重点实验室

清洁燃烧中心(Clean Combustion Center)

办公室: 兴庆校区 北二楼8400

           创新港:一号巨构1-4239

电话: 17782506760

Email: mengz8851@xjtu.edu.cn 

 

友情链接:王金华 教授    黄佐华 教授   能源与动力工程学院

站点计数器

介绍

目前任职

     

西安交通大学 能源与动力工程学院 副教授

 

研究/工作经历         

                

     2017.01-2019.12 西安交通大学 能源与动力工程学院 讲师  

     2015.01-2016.09 美国伊利诺伊大学香槟分校,机械工程学院  访问学者  

                                  导师:Moshe Matalon 教授

     2011.09-2012.08 日本庆应大学,动力系统及设计学院  访问学生  

                                  导师:饭田训正 教授

 

教育背景

 

     2010.09-2016.12 西安交通大学,动力工程及工程热物理     硕博   导师:黄佐华 教授
     2006.09-2010.07 西安交通大学,能源与动力系统及自动化 学士 

 

研究领域

 

     湍流/旋流燃烧燃烧激光诊断,燃烧不稳定性、LES数值模拟

     氨/氢燃料储存运输利用,污染物生成 

 

承担课程

 

     本科生基础课《线性代数与解析几何》 [课程简介]

     研究生全英文课程《Advanced Combustion Theory》

     研究生基础课《计算方法》

 

研究方向

 

1. 氨燃料利用

          氨不含碳,是良好的氢载体,但由于火焰速度低含氮高导致火焰难以稳定并且NOx排放较。火焰稳定一方面通过合理改变燃烧室结果,另一方面通过添加活性燃料改善,但是活性燃料调控稳定性同时又会带来更高的NOx排放。利用NO-/OH-PLIF可以得到同步NO和OH信息,分析NO生成路径。

       代表论文:[13,15-18]

 

 
2. 发动机着火过程直接数值模拟
HCCI发动机结合火花点火发动机和压缩点火发动机的优点,可以同时实现高效率和低排放。但传统的HCCI发动机运行工况范围窄,尤其是高负荷下混合物同时着火,压升率和放热率很高极易引起爆震等现象。通过改变初始温度,压力,采取一定程度分层,添加EGR等方法可以有效改善发动机性能。
代表论文:[4][14]
 
3. 预混湍流火焰流体动力学模拟

模拟基本思想是将预混燃烧火焰看做一个分开已燃和未燃气体的非连续界面,化学反应、热传导和粘性作用都繁盛非连续界面内,即火焰面。此数值模型忽略燃烧过程流场中次要的微小尺度,主要研究含能量的大尺度和火焰相互作用,相比于DNS大大节省计算量,研究流体动力学不稳定性、湍流强度,积分尺度单一参数变化对燃烧特性的影响。

代表论文:[9][10]
   
4. 基础湍流燃烧火焰动力学
预混湍流燃烧是由气动-热-化学(aero-thermal-chemistry)耦合作用控制,燃烧过程中湍流流动与燃烧化学反应耦合(turbulence-chemistry interaction)起主要作用。通过本生灯湍流火焰结构研究,得到了湍流燃烧速度随湍流强度的变化关系以及火焰结构的定量表征参数,阐明了火焰参数,流场参数,压力对湍流-火焰相互作用的影响机理以及稳定性对湍流火焰结构参数的影响规律理论推导了三维火焰结构和二维测量结构的关系,建立了湍流火焰二维测量估计三维火焰面密度的方法
代表论文:[1-3][5-8]
             
燃烧装置中时间尺度对比                         直接数码照片和OH-PLIF照片
       
合成气甲烷火焰结构对比                  压力影响火焰结构(CH4/air) 

主要论著

[18] Zhenhua An, Meng Zhang*, Weijie Zhang, Runze Mao, Xutao Wei, Jinhua Wang, Zuohua Huang, Houzhang Tan, Emission prediction and analysis on CH4/NH3/air swirl flames with LES-FGM method, Fuel 304 (2021) 121370. [PDF]

[17] Xutao Wei, Meng Zhang*, Zhenhua An, Jinhua Wang, Zuohua Huang, Houzhang Tan, Large eddy simulation on flame topologies and the blow-off characteristics of ammonia/air flame in a model gas turbine combustor. Fuel, 298 (2021) 120846. [PDF]

[16] Meng Zhang*, Zhenhua An, Liang Wang, Xutao Wei, Bieerlan Jianayihan, Jinhua Wang, Zuohua Huang, Houzhang Tan, The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor. International Journal of Hydrogen Energy, 46(2021)21013-21025. [PDF]

[15] Meng Zhang*, Zhenhua An, Xutao Wei, Jinhua Wang, Zuohua Huang, Houzhang Tan. Emission analysis of the CH4/NH3/air co-firing fuels in a model combustor. Fuel, 291(2021)120135. [PDF]

[14] Litian Su, Meng Zhang*, Jinhua Wang, Zuohua Huang. Direct numerical simulation of DME auto-ignition with temperature and composition stratification under HCCI engine conditions. Fuel, 285(2021)119073. [PDF]

[13] Meng Zhang*, Xutao Wei, Jinhua Wang, Zuohua Huang, Houzhang Tan, The blow-off and transient characteristics of co-firing ammonia/methane fuels on a swirl combustor. Proceedings of the Combustion Institute, 38(2021)5181-5190. [PDF]

[12] Zhang M, Wang J, Huang Z. Turbulent flame structure characteristics of hydrogen enriched natural gas with CO2 dilution. Int J Hydrog Energy, 2020;45: 20426-20435. [PDF]

[11] Zhang M*, Chang M, Wang J, Huang Z. Flame dynamics analysis of highly hydrogen-enrichment premixed turbulent combustion. Int J Hydrog Energy, 2019;45:1072-1083. [PDF]

[10] Zhang M*, Patyal A, Wang J, Huang Z. Darrieus-Landau instability effect on the fame topology and brush thickness for premixed turbulent flames. Appl. Therm. Eng. 158 (2019) 113603. [PDF]

[9] Zhang M*, Patyal A, Huang Z, Matalon M. Morphology of wrinkles along the surface of turbulent Bunsen flames – Their amplification and advection due to the Darrieus–Landau instability. Proc Combust Inst. 2019;37:2335-43. [PDF] 

[8] Zhang M, Wang J, Chang M, Huang Z. Turbulent flame topology and the wrinkled structure characteristics of high pressure syngas flames up to 1.0 MPa. Int J Hydrog Energy. 2019;44:15973-84. [PDF]

[7] Zhang M, Wang J, Jin W, Huang Z, Kobayashi H, Ma L. Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame. Combust Flame. 2015;162:2087-97. [PDF]

[6] Zhang M, Wang J, Xie Y, Wei Z, Jin W, Huang Z, et al. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames. Experimental Thermal and Fluid Science. 2014;52:288-96. [PDF]

[5] Zhang M, Wang J, Wu J, Wei Z, Huang Z, Kobayashi H. Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures. Int J Hydrog Energy. 2014;39:5176-85. [PDF]

[4] Zhang M, Wang J, Huang Z, Iida N. Numerical study of effects of the intermediates and initial conditions on flame propagation in a real HCCI engine. Thermal Science. 2014;18:79-87. [PDF]

[3] Wang J, Zhang M, Xie Y, Huang Z, Kudo T, Kobayashi H. Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa. Exp Thermal Fluid Sci. 2013;50:90-6. [PDF]

[2] Wang J, Zhang M, Huang Z, Kudo T, Kobayashi H. Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure. Combust Flame. 2013;160:2434-41. [PDF]

[1] Zhang M, Wang J, Xie Y, Jin W, Wei Z, Huang Z, et al. Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames. Int J Hydrog Energy. 2013;38:11421-8. [PDF]

 

专 利

 

[4] 张猛,郭威、吴诗怡、李中渊、任晋辉、董妍,苏利天、王金华一种氨低氮多级旋流燃烧器,发明专利,申请号:202110205203.4.

[3] 张猛,董妍,任晋辉、李中渊、吴诗怡、郭威、卫旭涛、王金华一种氢气引射式氨低氮旋流燃烧器,发明专利,申请号:202110205514.0.

[2] 张猛,徐婉莹,王金华,卫旭涛,苏利天,安振华,黄佐华,一种绿色高效的氨燃料燃烧系统与方法,发明专利,申请号:202011572070.6.

[1] 王金华,张猛,余芊芊,常敏,郭实龙,李倩倩,黄佐华,一种可产生多尺度可控湍流的燃烧器,发明专利,专利号:CN201910189482.2.