综述类
钱苏昕,袁丽芬,晏刚,鱼剑琳, 2018. 弹热制冷技术的发展现状与展望. 制冷学报. 39: 1-12.
S. Qian., Y. Geng, Y. Wang, J. Ling, Y. Hwang, R. Radermacher, I. Takeuchi, J. Cui, 2016. A review of elastocaloric cooling: materials, cycles and system integration. Int. J. Refrig. 64: 1-19.
S. Qian, D. Nasuta, A. Rhoads, Y. Wang, Y. Geng, Y. Hwang, et al. 2016. Not-in-kind cooling technologies: a quantitative comparison of refrigerants and system performance, Int. J. Refrig. 62: 177-192.
A. Kitanovski, U. Plaznik, U. Tomc , A. Poredos, 2015. Present and future caloric refrigeration and heat pump technologies. Int. J. Refrig. 57, 288–298.
B. Lu, J. Liu. Mechanocaloric materials for solid-state cooling. Science Bulletin. 60: 1638-1643.
W. Goetzler, R. Zogg, J. Young, C. Johnson. Energy savings potential and RD&D opportunities for non-vapor compression HVAC technologies. 2014.
系统研究
J. Tusek, K. Engelbrecht, D. Eriksen, S. Dall'Olio, J. Tusek, 2016. A regenerative elastocaloric heat pump. Nature Energy 1:16134.
S. Qian, Y. Geng, Y. Wang, J. Muehlbauer, J. Ling, Y. Hwang, et al. 2016. Design of a hydraulically driven compressive elastocaloric cooling system, Sci. Tech. Built Environ. 22: 500-506.
H. Ossmer, F. Wendler, M. Gueltig, F. Lambrecht, S. Miyazaki, M. Kohl, 2016. Energy efficient miniature-scale heat pumping based on shape memory alloys. Smart Mater. Struct. 25:085037.
H. Ossmer, S. Miyazaki, M. Kohl, 2015. Elastocaloric heat pumping using a shape memory alloy foil device. 2015 Transducers, Anchorage, USA.
S. Qian, Y. Wu, J. Ling, J. Muehlbauer, Y. Hwang, I. Takeuchi, R. Radermacher, 2015. Design, development and testing of a compressive thermoelastic cooling prototype. 24th IIR Int. Congress Refrig. Yokohama, Japan.
M. Schmidt, A. Schutze, S. Seelecke, 2015. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int. J. Refrig. 54, 88–97.
数值仿真
S. Qian, L. Yuan, J. Yu, G. Yan, 2017. Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection. Energy, 141: 744-756.
S. Qian, A. Alabdulkarem, J. Ling, J. Muehlbauer, Y. Hwang, R. Radermacher, I. Takeuchi, 2015. Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs, Int. J. Refrig. 57:62-76.
S. Qian, J. Ling, Y. Hwang, R. Radermacher, I. Takeuchi, 2015. Thermodynamic cycle analysis and numerical modeling of thermoelastic cooling systems, Int. J. Refrig. 56:65-80.
材料研究
X. Moya, E. Defay, V. Heine, N.D. Mathur, 2015. Too cool to work. Nature Physics. 11: 202-205.
C. Chluba, W. Ge, R. Miranda, J. Strobel, L. Kienle, E. Quandt, et al., 2015. Ultralow-fatigue shape memory alloy films. Science 348: 1004-1007.
Y. Xu, B. Lu, W. Sun, A. Yan, J. Liu, 2015. Large and reversible elastocaloric effect in dual-phase Ni54Fe19Ga27 superelastic alloys. Appl. Phys. Lett. 106: 201903.
Otsuka, K.,Wayman, C.K., 1998. Shape Memory Materials. Cambridge University Press, London, UK.