研究兴趣

  1. 太阳能热化学转化Solar Thermochemical Conversion and Storage

  2. 全钒液流电池 All-Vandium Redox Flow Battery

  3. 固态可逆储氢 Material-based Hydrogen Storage

  4. 质子交换膜燃料电池PEM-based Fuel Cell

  5. 动力电池热管理Battery Thermal Management

  6. 强化传热传质Enhancing Heat/Mass Transfer

书籍和书籍章节

没有找到条目。
出版物 作者 出版日期 出版社
可再生能源概论 左然,徐谦,杨卫卫 2021-04-01 机械工业出版社
FUEL CELLS - DIRECT ALCOHOL FUEL CELLS | Modeling, Encyclopedia of Electrochemical Power Sources T.S. Zhao, W.W. Yang 2009-01-01 Elsevier
燃料电池中多相多组分传输过程的模拟 (442)《10000个科学难题:物理学卷》 赵天寿, 杨卫卫 2009-01-01 北京:科学出版社

期刊论文

2023年

[99] W.W. Yang*, X.Y. Tang, X. Ma, Y.J. Yang, P.Y. Dou, Y.L. He, Theoretical analysis of a solar membrane reactor with enhanced mass transfer by using helical inserts, Energy Conversion and Management, 283(2023)116885.  (IF:11.5) 

[98] W.W. Yang*, X. Ma, X.Y. Tang, P.Y. Dou, Y.J. Yang, Y.L. He, Review on developments of catalytic system for methanol steam reforming from the perspective of energy mass conversion, Fuel, 345(2023)128234.  (IF:8)    Review article

[97] X.Y. Tang, W.W. Yang*, X.Ma, X.K. Cao, An integrated modeling method for membrane reactors and optimization study of operating conditions, Energy, 268(2023)126730. 

[96] X.Y. Tang, K.R. Zhang, W.W. Yang*, P.Y. Dou, Integrated design of solar concentrator and thermochemical reactor guided by optimal solar radiation distribution, Energy, 263(2023) 125828.

[95]T. Zhang, X.Y.Tang, W.W.Yang*, X.Ma, Comprehensive performance study on novel reflux solar methanol steam reforming reactor for hydrogen production, International Journal of Hydrogen Energy, 48(2023)879-893.

[94] X.S. Bai, L. Rong, W.W. Yang*, F.S. Yang, Effective thermal conductivity of metal hydride bed: theoretical model and experimental validation, Energy, 48(2023)127085. 

[93] Y.J. Yang, W.W. Yang*, X. Ma, X.Y. Tang, X.K. Cao, Performance improvement of a solar volumetric reactor with passive thermal management under different solar radiation conditions, International Journal of Hydrogen Energy, 48(2023)20193-20207.

[92] M. Ye, L. Rong, X. Ma, W.W. Yang*, Numerical optimization of triple-phase components in order-structured cathode catalyst layer of a proton exchange membrane fuel cell, Energies, 16(2023)1623. 

[91] P.Y. Dou, X.Y. Tang, W.W. Yang*, Y.L. He, Design of a multi-inlet solar thermochemical reactor for steam methane reforming with improved performance. Energy Storage and Saving, 2(2023)403-414.

[90] Z.Q. Dai, X. Ma, X.Y. Tang, R.Z. Zhang, W.W. Yang*, Solar-thermal-chemical integrated design of a cavity-type solar-driven methane dry reforming reactor, Energies, 16(2023)2781.

[89] H.T. Hou, R.P. Yang, Q. Ma, Z. Li, H.N. Su, P. Lu, W.W. Yang*, Q. Xu*, Modeling and simulation of non-aqueous redox flow batteries: A mini-review, Batteries, 2023, Accepted. (IF:5.9)  Review article

2022年及以前

[88] X.S. Bai, W.W. Yang*, Y.J. Yang, K.R. Zhang, F.S. Yang, Multi-variable optimization of metal hydride hydrogen storage reactor with gradient porosity metal foam and evaluation of comprehensive performance, International Journal of Hydrogen Energy, 47(2022) 35340-35351.

[87] Z.Q. Dai, Y.J. Yang, X.Y. Tang, L. Rong, W.W. Yang*, A thermochemical reactor design with better temperature management and improved performance for methane/carbon dioxide dry reforming,  International Journal of Hydrogen Energy, 47(2022)34794-34809.

[86] M.Y. Lu, W.W. Yang*, Z.K. Zhang, Y.J. Yang, Q. Xu, Lead-modified graphite felt electrode with improved VO2+/VO2+ electrochemical activity for vanadium redox flow battery, Electrochimica Acta, 428(2022)140900.

[85] X.Y. Tang, P.Y. Dou, Z. Q. Dai, W.W. Yang*, Structural design and analysis of a solar thermochemical reactor partially filled with phase change material based on shape optimization, Solar Energy, 236(2022)613-625.

[84] X.Y. Tang, W.W. Yang*, Z.Q. Dai, Y.J. Yang, Inverse design of local solar flux distribution for a solar methanol reforming reactor based on shape optimization, Frontier in Energy Research, 10(2022)881822.

[83] W.Y. Zhang, W.W. Yang*, Y.H. Jiao, D.W. Zhang, Numerical study of periodical cosine vibration effects on the heat transfer and fluid flow of internal turbulent flow, International Journal of Thermal Science, 173(2022)107367.

[82] Y. H. Jiao, M.Y. Lu, W.W. Yang*, X.Y. Tang, M. Ye, Q. Xu, A 3D macro-segment network model for vanadium redox flow battery with serpentine flow field, Electrochimica Acta, 403(2022)139657.

[81] Y.H. Jiao, Z.K. Zhang, P. Y. Dou, Q. Xu, W.W. Yang*, Consistency analysis and resistance network design for vanadium redox flow battery stacks with a cell-resolved model, International Journal of Green Energy, 19(2022)2023885.

[80] X.S. Bai, W.W. Yang*, X. Y. Tang, Z.Q. Dai, F.S. Yang, Parametric optimization of fin-metal foam composite metal hydride bed towards enhanced absorption performance of metal hydride hydrogen storage device, Energy, 243(2022)123044.

[79] P. Lu, P.Z.  Sun, Q. Ma, H.N. Su, P. Leung, W.W. Yang*, Q. Xu*, Rationally designed ternary deep eutectiv solvent enabling higher performance for non-aqueous redox flow batteries. Processes, 10(2022)649. 

[78] P.Z. Sun, R.P. Zhang, H.T. Zhou, Q. Ma, W.Q. Zhang, H.N. Su, W.W. Yang*, Q. Xu*, Effect of external ultrasonic field on the performance of an iron-vanadium flow battery with non-aqueous deep eutectic solvent (DES) electrolyte, International Journal of Energy Research, 46(2022)1-14.

[77] R.P. Zhang, H.T. Zhou, P.Z. Sun, Q. Ma, M.Y. Lu, H.N. Su, W.W. Yang*, Q. Xu*, Research progress on nanaparicles applied in redox flow batteries (RFBs), Battery Energy, 2022,1:20220023.  Review article

[76] X.S. Bai, W.W. Yang*, X.Y. Tang, F.S. Yang, Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study, Energy, 220(2021)119738.

[75] M.Y. Lu, Y.H. Jiao, X.Y. Tang, W.W. Yang*, M. Ye, Q. Xu, Blocked serpentine flow field with enhanced species transport and improved flow distribution for vanadium redox flow battery, Journal of Energy Storage, 35(2021)102284. 

[74] M.Y. Lu, W.W. Yang*, X.Y. Tang, Y.H. Jiao, M. Ye, Q. Xu,  Asymmetric structure design of a vanadium redox flow battery for improved battery performance, Journal of Energy Storage, 44(2021)103337.

[73] X.Y. Tang, W.W. Yang*,Y. Yang, Y.H. Jiao, T. Zhang, A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution, 2021, Energy, 229(2021)120749.  

[72] X.S. Bai, W.W. Yang*, X.Y. Tang, F.S. Yang et al., Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels Energy, 232(2021)121101.

[71] P. Lu, P. Leung, H.N. Su, W.W. Yang*, Q. Xu*, Materials, performance, and system design for integrated solar flow batteries-A mini review, Applied Energy, 282(2021)116210.  (IF:11.45) Review article

[70] J. C Xu, R. Cheng, J. J. Zhang, P. Leung, Q. Ma, H.N. Su, W.W. Yang*, Q. Xu*, Facile segmented graphite felt electrode for iron-vanadium redox flow batteries with deep eutectic solvent (DES) electrolyte, Journal of Power Sources, 483(2021) 229200.  (IF:9.79)

[69] P.Z. Sun, J.C. Xu, Q. Ma, W.Q. Zhang, A.A. Shah, H.N. Su, W.W. Yang*, Q. Xu*, The influence and control of ultrasonic on the transport and electrochemical properties of redox couple ions in deep eutectic solvent(DES) for redox flow battery application, Electrochimica Acta, 394(2021) 139140.

[68] R. Cheng, P.Z Sun, H.N. Su, W.W. Yang, P. Leung, Q. Xu*, Effect of exerted magnetic field on the performance of non-aqueous iron-vanadium redox flow battery with deep eutectic solvent (DES) electrolyte, Electrochimica Acta, 399(2021)139404.

[67] W.W. Yang*, X.S. Bai, W.Y. Zhang, M.Y. Lu, Q. Xu, Numerical Examination of the Performance of a Vanadium Redox Flow Battery under Variable Operating Strategies, Journal of Power Sources, 457(2020)228002. (IF:9.79)

[66] M.Y. Lu, W.W. Yang*, Y.M. Deng, Q. Xu, An optimal electrolyte addition strategy for improving performance of a vanadium redox flow battery, International Journal of Energy Research, 44(2020)2604-2616.

[65] X.S. Bai, W.W. Yang*, W.Y. Zhang, F.S. Yang, X.Y. Tang, Hydrogen absorption performance of a novel cylindrical MH reactor with combined loop-type finned tube and jacket cooling system, Int. J. Hydrogen Energy, 45(2020)28100-28115.

[64] W.Z. Li, W.W. Yang*, N. Wang, Y.H. Jiao, Y. Yang, Z.G. Qu, Optimization of the Blocked Channel Design for a Proton Exchange Membrane Fuel Cell by Coupled Genetic Algorithm and Three-dimensional CFD modeling, Int. J. Hydrogen Energy, 45(2020)17759-17770.

[63] M.Y. Lu, Y.M. Deng, W.W. Yang*, M. Ye, Y.H. Jiao, Q. Xu, A Novel Rotary Serpentine Flow Field with Improved Electrolyte Penetration and Species Distribution for Vanadium Redox Flow Battery, Electrochimica Acta, 361(2020) 137089.

[62] J.C. Xu, Q. Ma, L. Xing , H.H. Li , P.K. Leung, W.W. Yang*, H.N. Su, Q. Xu*, Modeling the effect of temperature on performance of an iron-vanadium redox flow battery with deep eutectic solvent (DES) electrolyte, Journal of Power Sources, 449(2020) 227491.

[61] P. Lu, L.Y. Qin, P. Balakrishnan, Q.Ma, H.N. Su, W.W.Yang*, Q.Xu* The effect of additive supporting electrolytes on transport and electrochemical properties of deep eutectic solvent (DES) applied in non-aqueous redox flow batteries, Ionics, 26(2020) 5029-5036.

[60] R. Cheng, J.C. Xu, X.Y. Wang, Q. Ma, H.N. Su, W.W. Yang*, Q. Xu*, Electrochemical characteristics and transport properties of V(II)/V(III) redox couple  in a deep eutectic  solvent: Magnetic field effect ,  Frontiers in Chemistry,  8(2020)619. 

[59] Q. Ma, L. Xing, H.N Su, W.Q. Zhang, W.W. Yang, Q. Xu*, Numerical investigation on the dispersion effect in VRFBs, Chemical Engineering Journal, 2020, 393(1)124753. (IF:16.74)

[58] Q. Ma, L.J. Zhao, J.C. Xu, H.N. Su, W.Q. Zhang, W.W. Yang, Q. Xu, Pore-scale investigation of reactive transfer process in a deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery, Electrochimica Acta, 353(2020)136486.

[57] M.Y. Lu, W.W. Yang*, Y.M. Deng, W.Z. Li, Q. Xu*, Y.L. He, Mitigating Capacity Decay and Improving Charge-Discharge Performance of a Vanadium Redox Flow Battery with Asymmetric Operating Conditions, Electrochimica Acta, 2019(309)283-299.

[56] W.Z. Li, W.W. Yang*, W.Y. Zhang, Z.G. Qu, Y.L. He, Three-dimensional modeling of a PEMFC with serpentine flow field incorporating the impacts of electrode inhomogeneous compression deformation, Int. J. Hydrogen Energy, 44 (2019) 22194-22209.

[55] M.Y. Lu, W.W. Yang*, X.S. Bai, Y.M. Deng, Y.L. He, Performance improvement of a vanadium redox flow battery with asymmetric electrode designs, Electrochimica Acta, 319 (2019) 210-226. 

[54] Q. Xu*, L.Y. Qin, Y.N. Ji, P.K. Leung, H.N. Su, F. Qiao, W.W. Yang*, A.A. Shah, H.M. Li, A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability, Electrochimica Acta, 293 (2019) 426-431.

[53] Jian-fei Zhang, Long Jia, Wei-wei Yang, Jan Taler, Pawel Oclon, Numerical analysis and parametric optimization on flow and heat transfer of a microchannel with longitudinal vortex generators, International Journal of Thermal Science, 141(2019) 211-221.

[52] J.H. Jiang, Y.S. Li, J.R. Liang, W.W. Yang, X.L. Li. Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer. Applied Energy 252 (2019) 113431.

[51] D.W. Zhang, E.H. Jiang, C. Shen, J.J. Zhou, W.W. Yang, Y.L. He, Numerical analysis on thermoacoustic prime mover, Journal of Sound and Vibration, 463(2019) 114946.

[50] W.W. Yang*, F.Y. Yan, Z.G. Qu, Y.L. He, Effect of Various Strategies of Soc-dependent Operating Current on Performance of a Vanadium Redox Flow Battery, Electrochimica Acta, 259 (2018)772-782.

[49] Z. Ma, M.J. Li, W.W. Yang *, Y.L. He, General performance evaluation charts and effectiveness correlations for the design of thermocline heat storage system, Chemical Engineering Science, 185(2018)105-115.

[48] Z. Ma, W.W. Yang, M.J. Li, Y.L. He, High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions, Applied Energy, 230(2018)769-783.  (IF:11.45)

[47] Q. Wang, Z.G. Qu*, Z.Y. Jiang, W.W. Yang*, Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode, Applied Energy, 213(2018)293-305.  (IF:11.45)

[46] Q. Wang, Z.G. Qu*, Z.Y. Jiang, W.W. Yang*, Numerical study on vanadium redox flow battery performance with non-uniform compressed electrode and serpentine flow field, Applied Energy, 220(2018) 106-116.  (IF:11.45)

[45] Shen Du, Ya-Ling He, Wei-Wei Yang, Zhan-Bin Liu, Optimization method for the porous volumetric solar receiver coupling genetic algorithm and heat transfer analysis, Int. J. Heat Mass Transfer, 1222018383-390.

[44] Y.P. Zhou, M.J. Li, W.W. Yang, Y.L. He, The effect of the full-spectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process, Applied Energy, 213(2018): 169-178

[43] W.W. Yang*, X.Q. Cao, Y.L. He, F.Y. Yan, Theoretical study of a high-temperature heat pump system composed of a CO2 transcritical heat pump cycle and a R152a subcritical heat pump cycle, Applied Thermal Engineering, 120(2017)228-238.

[42] Z. Ma, W.W. Yang*, F. Yuan, B. Jin, Y.L. He*, Investigation on the thermal performance of a high-temperature latent heat storage system, Applied Thermal Engineering, 122 (2017) 579-592.

[41] W.W. Yang*, M. Y. Lu, Y.L. He, “Performance study of an alkaline direct ethanol fuel cell with a reduced two-dimensional mass transport model”, Int. J. Hydrogen Energy, 2016. 41(45):20693-20708.

[40] W.W. Yang*, Y.L. He, Y.S. Li, “Performance Modeling of a Vanadium Redox Flow Battery during Discharging”, Electrochimica Acta 155 (2015) 279-287.

[39] Y. Wang, Y.L. He, W.W. Yang, Z.D. Cheng, “Numerical analysis of flow resistance and heat transfer in a channel with delta winglets under laminar pulsating flow”, Int. J. Heat and Mass Transfer, 82 (2015)51-65.

[38] Y.S. Li, Y.L. He, W.W. Yang, “A high-performance direct formate-peroxide fuel cell with palladium-gold alloy coated foam electrode”, J. Power Sources, 278(2015)569-573.

[37] X.Q. Cao, W.W. Yang*, Y. L. He, F. Zhou, Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery, Applied Thermal Engineering, 71(2014)291–300.

[36] Y.L. HeD.W. Zhang, W.W. Yang et al, “Numerical analysis on performance and contaminated failures of the miniature split Stirling cryocooler”,Cryogenics, 59(2014)12-22.

[35] H. Xi, M.J. Li, Y.L. He, W.W. Yang, Y.S. Li, Parametric optimization of zeotropic mixtures used in low-temperature organic rankine cycle for power generation, Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, VOL3B(2014) V03BT26A008.

[34] D.W. Zhang, Y. L. He, W.W. Yang et al., “Experimental visualization and heat transfer analysis of the oscillatory flow in thermoacoustic stacks”, Experimental Thermal and Fluid Science, 46(2013) 221-231.

[33] D.W. Zhang, Y. L. He, W.W. Yang et al., “Particle image velocimetry measurement on the oscillatory flow at the end of the thermoacoustic parallel stacks”, Applied Thermal Engineering, 51 (2013)325-333. 

[32] Y.S. Li, Y.L. He, W.W. Yang, “Performance characteristics of air-breathing anion exchange membrane direct ethanol fuel cells”Int. J. Hydrogen Energy, 38 (2013) 13427-13433.

[31] W.W. Yang, Y.L. He, Y.S. Li, “Modeling of dynamic operating behaviors in a liquid-feed direct methanol fuel cell”, Int. J. Hydrogen Energy, 37(2012) I8412-I8424.

[30] X.Y. Li, W.W. Yang, Y.L. He, T.S. Zhao, Z.G. Qu, “Effect of anode microporous layer on species crossover through the membrane of liquid-feed direct methanol fuel cells”, Applied Thermal Engineering, 48(2012)392-401.

[29] Y.L. He, Z. Miao, W.W. Yang, “Characteristics of heat and mass transport in a passive direct methanol fuel cell operated with concentrated methanol”, Int. J. Hydrogen Energy, 208(2012)180-186.

[28] Y.L. He, Z. Miao, T.S. Zhao, W.W. Yang, “Numerical study on the effects of the GDL structure on water crossover in a direct methanol fuel cell”, Int. J. Hydrogen Energy, 37(2012) 4422-4438.

[27] Y.L. He, D. H. Mei, W. Q. Tao, W.W. Yang, H. L. Liu, “Simulation of the parabolic trough solar energy generation system with organic Rankine cycle”, Applied energy, 97(2012)630-641.

[26] W.W. Yang, T.S. Zhao, Q.X. Wu, “Modeling of a passive direct methanol fuel cell operating with neat methanol,” Int. J. Hydrogen Energy 36 (2011) 6899-6913.

[25] Q. Xu, T.S. Zhao, W.W. Yang, R. Chen, “A flow field enabling operating direct methanol fuel cells with highly concentrated methanol,” Int. J. Hydrogen Energy, 36 (2011) 6899-6913.

[24] Q.X. Wu, T.S. Zhao, W.W. Yang, “Effect of the cathode gas diffusion layer on the water transport behavior and the performance of passive direct methanol fuel cells operating with neat methanol,” Int. J. Heat & Mass Tran. 54 (2011) 1132-1143.

[23] Y.S. Li, T.S. Zhao, J.B. Xu, S.Y. Shen, W.W. Yang, “Effect of the cathode micro-porous layer on performance of anion-exchange membrane direct ethanol fuel cells,” J. Power Sources, 196(2011)1802-1807.

[22] T.S. Zhao, W.W. Yang, R. Chen, C. Xu, “Toward operating direct methanol fuel cells with highly-concentrated fuel,” J.  Power Sources 195 (2010) 3451-3462.  (IF:9.79)   Review article

[21] Y.S. Li, T.S. Zhao, W.W. Yang, “Measurements of water uptake and transport properties in anion-exchange membranes,” Int. J. Hydrogen Energy 35 (2010) 5656-5665.

[20] J.B. Xu, T.S. Zhao, W.W. Yang, S.Y. Shen, “Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells,” Int. J. Hydrogen Energy 35 (2010) 8699-8706.

[19] J.B. Xu, T.S. Zhao, Y.S. Li, W.W. Yang, “Synthesis and characterization of the au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells,” Int. J. Hydrogen Energy 35 (2010) 9693-9700.

[18] E.D. Wang, T.S. Zhao, W.W. Yang, Poly (vinylalcohol)/3- (trimethylammonium) propyl- functionalized silica hybrid membranes for alkaline direct ethanol fuel cells,” International Journal of Hydrogen Energy 35 (2010) 2183-2189.

[17] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, “Microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels,” J. Micromech. Microeng. 20 (2010) 045014.

[16] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, “Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol,” Int. J. Hydrogen Energy 35(2010) 10547-10555.

[15] W.W. Yang, T.S. Zhao, “Numerical investigations of the effect of the membrane electrode assembly structure on water crossover in a liquid-feed direct methanol fuel cell,” J. Power Sources 188 (2009) 433–446.  (IF:9.79)

[14] W.W. Yang, T.S. Zhao, “An approach for determining the liquid water distribution in a liquid-feed direct methanol fuel cell,” J. Power Sources 190 (2009) 216–222. (IF:9.79)

[13] T.S. Zhao, R. Chen, W.W. Yang, C. Xu, “Small direct methanol fuel cells with passive supply of reactants,” J. Power Sources 191 (2009) 185-202. (IF:9.79) Review article

[12] T.S. Zhao, C. Xu, R. Chen, W.W. Yang, “Mass transport phenomena in direct methanol fuel cells,” Progress in Energy and Combustion Science 35 (2009) 275-292. (IF:35.34)  Review article

[11] Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, “Effects of anode micro porous layers made of carbon powder and nanotubes on water transport in direct methanol fuel cells,”J. Power Sources 191 (2009) 304-311.

[10] W.W. Yang, T.S. Zhao, Y.L. He, “Modeling of coupled electron and mass transport in anisotropic PEM fuel cell electrodes,” J. Power Sources 185 (2008) 765-775.

[9] W.W. Yang, T.S. Zhao, “A transient two-phase mass transport model for liquid feed direct methanol fuel cells,” J. Power Sources 85 (2008) 1131-1140.

[8] R. Chen, T.S. Zhao, W.W. Yang, C. Xu, “Two-dimensional two-phase thermal model for passive DMFCs,” J. Power Sources 175 (2008) 276-287.

[7] C. Xu, T.S. Zhao, W.W. Yang, “Modeling of water transport through themembrane electrode assembly for direct methanol fuel cells,” J. Power Sources 178 (2008) 291-308.  

[6] W.W. Yang, T.S. Zhao, “A two-dimensional, two-phase mass transport model for liquid-feed DMFCs,” Electrochimica Acta 52 (2007) 6125-6140.

[5] W.W. Yang, T.S. Zhao, “Two-phase mass transport model for DMFCs with the effect of non-equilibrium evaporation and condensation,” J. Power Sources 174 (2007) 136-147. (IF:9.79)

[4] W.W. Yang, T.S. Zhao, C. Xu, “Three-dimensional two-phase mass transport model for direct methanol fuel cells,” Electrochimica Acta.53 (2007) 853-862.

[3] C.Y. Du, T.S. Zhao, W.W. Yang, “Effect of Methanol Crossover on the Cathode Behavior of a DMFC: A Half-Cell Investigation,” Electrochimica Acta 52(2007) 5266-5271.

[2] Y.L. He, C.F. Zhao, W.J. Ding, W.W. Yang, “Two-dimensional numerical simulation and performance analysis of tapered pulse tube refrigerator,” Applied Thermal Engineering, 27 (2007)1876-1882.

[1] Y.L. He, W.W. Yang, W.Q. Tao, “Three-dimensional numerical study of natural convective heat transfer of liquid in a cubic enclosure,” Numerical Heat Transfer Part A: Applications 47(2005) 917-934.

专利

杨卫卫,唐鑫源,白晓帅,焦宇航,阳昱,叶苗,一种二次聚光反射-均匀热流槽式太阳能集热器,发明专利,专利号:ZL 202010681591.9,授权日期: 2021-09-07.

杨卫卫,白晓帅,杨福胜,刘家璇,一种翅片与环路式冷却系统耦合的储氢反应器,发明专利,专利号:ZL201911311465.8,授权日期:2021.02.19.

杨卫卫,白晓帅,唐鑫源,戴舟桥,叶苗,杨福胜,一种复合翅片与金属泡沫的耦合套管储氢反应器,专利号:ZL202110819973.8,授权日期:2022.08

杨卫卫,梁琨, 白晓帅,一种耐堵塞波纹板式余热采集器,实用新型,专利号:ZL202122275510.8, 授权日期:2022.07.01

杨卫卫,窦培原,唐鑫源,白晓帅,张凯然,一种基于强化预热的锥形太阳能甲烷重整反应器,发明专利,申请号:2022106823717,申请日期:2022-06-16.

杨卫卫,唐鑫源,白晓帅,一种基于热力学平衡的产物分离膜反应器的一体化建模方法,发明专利,申请号:2022108996157,申请日期:2022-07-28.

杨卫卫,杨永健,唐鑫源,窦培原,白晓帅,一种优化能量分配策略的被动热管理式太阳能高温反应器,发明专利,申请号:2022110349761,申请日期:2022-08-26.

何雅玲, 汤松臻, 刘占斌, 于洋, 谢涛, 杨卫卫,一种移动床高温煅烧反应的模拟实验装置及测试方法,发明专利,专利号:ZL201811354910.4,授权日期:2020.08.25,申请日期:2018.11.14.

何雅玲,杜燊,李明佳,杨卫卫,刘占斌. 一种多孔介质太阳能吸热器结构和运行参数优化方法. 发明专利. 专利号:ZL 201710828897.0,授权日期:2019.07.23,申请日2017.09.14.

何雅玲,韩辉,李明佳,杨卫卫,王煜. 一种用于余热回收的椭圆管H型翅片换热器. 发明专利. 专利号:ZL 201310354388.0,授权日期:2015.07.01,申请日:2013.08.14.

何雅玲,黄竞,杨卫卫,高凡,陶文铨. 多孔介质内交变流动和换热计算软件. 软件著作权,2008SR05669.

何雅玲,陶文铨,丁文静,黄竞,杨卫卫等. 交变流动和换热计算软件. 软件著作权,2008SR05668.