研究方向

 

 课题组目前主要研究方向:

1、电磁诱导透明调控多波混频、慢光及窄带长距离通信
2、明暗态调控多波混频、荧光及光二极管
3、飞秒及阿秒超快极化拍光子技术
4、光子带隙调控多波混频离散空间孤子、宇称时间对称及光子拓扑绝缘体
5、里德堡态局域堵塞多波混频光分子及量子计算
6、环型腔中多波混频量子调控与量子信息处理
7、固体原子相干系统与全光量子芯片
8、原子晶格态调控的量子和类量子效应、微腔光子学、超材料微纳光学
9、外腔式半导体激光器及配套电源的研制与开发 

 

研究领域

各方向简介及代表性工作

(a) 电磁诱导透明(EIT)调控多波混频相互影响及其慢光现象

 

 在对多波混频的产生过程调控方面,课题组利用电磁诱导透明 (EIT)现象中不同的吸收和辐射路径之间的量子相消和相涨干涉对其进行有效的调控。也就是利用强的耦合光使原子处于对探测光和多波混频信号的吸收均相消干涉的暗态,从而有效地提高多波混频信号的辐射效率。自从1990年以来,三和四能级原子系统中的EIT已得到了充分的研究。近共振EIT效应导致非常大的由原子相干诱导的三阶非线性,以及小的线性吸收,因而在三和四能级原子系统中导致高效的四波混频(FWM)过程。在典型情形下,高阶非线性系数将远小于低阶非线性系数,达到几个数量级,尤其是在利用连续毫瓦激光功率时,在以前大多数多能级原子系统中,实验上仅能观测到独立的低阶非线性多波混频过程。申请人在通过实现多波混频的共存,相互影响及其慢光现象方面,取得了一系列引人注目的进展。其在实验上首次在气体原子闭合四能级系统和特定的激光束配置下,使FWM和SWM过程以相近的信号幅度共存并能在闭合反V型四能级系统的同一个EIT窗口中共存传输[Appl. Phys. Lett. 91, 221108 (2007); Phys. Rev. A 74, 053813 (2006)]。在国际上,申请人首次在Y型[Zhang et al, Phys. Rev. Lett. 99, 123603 (2007)],反Y型四能级原子系统里,实验上产生出高效率的共存的FWM和SWM;首次在实验上观察到FWM和SWM信号之间的频率干涉[Opt. Lett. 32, 1120 (2007); Phys. Rev. A 73, 053801 (2006)]。申请人率先研究了Y型能级里共存的具有相同信号频率的两个四波混频信号之间由于共用着相同能级的原子相干而发生的强烈的相互竞争 [Appl. Phys. Lett. 91, 061113 (2007)]。其在实验上首次验证了产生于四能级原子系统(如反Y型)中处于同一个EIT窗口中的共存的FWM和SWM之间存在着高效率能量交换,发现它们足够长距离传播后,将分别趋于能量稳定状态[Zhang et al, Phys. Rev. A, Rapid Commun. 77, 061801 (2008)]。在此基础上,申请人进一步研究了低阶和高阶混频信号之间相位控制的时间空间立体干涉实验图谱[Zhang et al, Phys. Rev. Lett. 102, 013601 (2009)];研究了n+1能级原子系统中不同阶的多波混频间的同时共存和相互作用[OE 15, 7182 (2007)]。在复杂的五能级系统中,我们课题组研究了三种双缀饰机制(并联,级联和嵌套缀饰)对FWM的量子调控[Phys. Rev. A 78, 063829 (2008)]。利用EIT对共存的多波混频过程的产生和相互作用的调控,必然会对设计,优化和控制理想的多通道全光非线性器件有很大作用,具有相当重要的科学意义和应用价值。通过EIT研究共存的多波混频之间的相互作用为通过EIT实现多波混频在量子层面上的调控奠定了良好的基础。

Selected Publications:

[1]        Yanpeng Zhang, Utsab Khadka, Blake Anderson, and Min Xiao, "Temporal and spatial interference between four-wave mixing and six-wave mixing channels", Phys. Rev. Lett. 102, 013601 (2009).

[2]        Yanpeng Zhang, Blake Anderson, Min Xiao, "Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence", Phys. Rev. A, Rapid Commun. 77, 061801 (2008).

[3]        Yanpeng Zhang, Andy W. Brown, and Min Xiao, "Matched ultraslow propagation of highly efficient four-wave mixing in a closely-cycled double-ladder system", Phys. Rev. A 74, 053813 (2006).

[4]        Yanpeng Zhang and Min Xiao, "Enhancement of six-wave mixing by atomic coherence in a four-level inverted-Y system", Appl. Phys. Lett. 90, 111104 (2007).

[5]        Yanpeng Zhang, Andy W. Brown, and Min Xiao, "Observation of interference between four-wave mixing and six-wave mixing", Opt. Lett. 32, 1120 (2007).

[6]        Yanpeng Zhang and Min Xiao, "Generalized dressed and doubly-dressed multi-wave mixing", Opt. Express 15, 7182 (2007).

[7]        Yanpeng Zhang, Andy W. Brown, Chenli Gan, and Min Xiao, "Intermixing between four-wave mixing and six-wave mixing via atomic coherence", J. Phys. B 40, 3319 (2007).

[8]        Yanpeng Zhang, Blake Anderson, Andy W. Brown, and Min Xiao, "Competition between two four-wave mixing channels via atomic coherence", Appl. Phys. Lett. 91, 061113 (2007).

[9]        Yanpeng Zhang, Andy W. Brown, and Min Xiao, "Opening four-wave mixing and six-wave mixing channels via dual induced transparency", Phys. Rev. Lett. 99, 123603 (2007).

[10]     Yanpeng Zhang, Utsab Khadka, Blake Anderson, Andy W. Brown, and Min Xiao, "Controlling four-wave and six-wave mixing processes in multi-level atomic systems", Appl. Phys. Lett. 91, 221108 (2007).

[11]     Yanpeng Zhang, Blake Anderson, and Min Xiao, "Coexistence of four-wave, six-wave and eight-wave mixing processes in multi-dressed atomic systems", J. Phys. B 41, 045502 (2008).

[12]     Z. Q. Nie, H. B. Zheng, P. Z. Li, Y. M. Yang, Y. P. Zhang and M. Xiao, "Interacting multiwave mixing in a five-level atomic system", Phys. Rev. A 78, 063829 (2008).

[13]   Blake Anderson, Yanpeng Zhang, Utsab Khadka, and Min Xiao, "Spatial Interference      between Generated Four-wave Mixing and Six-wave Mixing Signals", Opt. Lett. 33, 2029 (2008).

[14]  Gaoping Huang, Yiqi Zhang, Zhaoyang Zhang, Xin Yao, Junling Che, Huaibin Zheng, and Yanpeng Zhang, “Evidence of Autler-Townes splitting in fluorescence and six-wave mixing with multi-electromagnetically induced transparency”, J. Opt. Soc. Am. B 30, 2563 (2013).

[15]  Zhiguo Wang, Zhaoyang Zhang, Junling Che, Yunzhe Zhang, Changbiao Li, Huaibin Zheng and Yanpeng Zhang, “Controllable ultra-narrow fluorescence and six-wave mixing under double electromagnetically induced transparency”, Laser Phys. Lett. 10, 095402 (2013).


                                         

       FWM SWM 信号的空间干涉                         FWM SWM 信号共存在双EIT窗口 
                       
                   
                                                     FWM SWM 信号的时间和空间干涉

 

 

                              
 
                                                  多波混频实验光路图

 

(b)明暗态调控多通道多波混频与共振荧光
 

EIT和电磁诱导吸收(EIA)对介质的光学性质有很大的影响。在EIT条件下,探测光和多波混频信号都会产生暗态共振,因而它们的吸收都会被大幅抑制,它们能够在很小的损耗下在介质中传播,同时多波混频的极化率会被明显地抑制;当介质处于EIA状态时,探测光和多波混频信号都会产生明态共振,在探测场吸收效率增强的同时,多波混频的产生效率会被极大地增强。因而我们可以利用明暗态共振之间的转换,有选择性地抑制和增强特定的多波混频过程。明态和暗态共振决定于明暗态的位置,在实验上可以利用调节缀饰场和探测场的失谐,强度和偏振等参量来控制缀饰场的位置,因而其可以带来多波混频信号的多参量可调控性。据此,申请人通过理论和实验研究,发现了在FWM与SWM这种高阶非线性过程中的多级Autler-Townes (AT)分裂 [Opt. Lett. 35, 3420 (2010), ]。但是,通常情况下改变探测场的频率所获得的信号中会夹杂着来自于经典辐射过程的背景信号。针对这个问题,申请人首次提出了对缀饰效应、量子干涉、原子相干的直接测量方法,即通过扫描缀饰场的频率失谐量,直接测量强缀饰场的EIA和EIT现象,以及其对多波混频信号的增强和抑制现象。该方法的优点是测量获得的光谱中剔除了非线性信号辐射的经典洛伦兹背景,完全提取出了量子效应。通过缀饰态理论和多次实验,申请人课题组获得了关于缀饰场对多波混频抑制增强作用的系统研究,即获得了缀饰场失谐,强度,偏振以及相位控制的FWM与SWM增强和抑制现象。著名光谱专家Ulness教授对该项工作的评价:“The authors are leaders in the area of EIT ……”。申请人课题组还研究了上能级多波混频的抑制增强[IEEE J. Quantum Electron. 50, 25 (2014) 封面文章],其可以进一步消除经典信号的影响。此外,在多能级中的多波混频过程中,原子布居的变化会产生多通道的共振荧光,其同样受到多个缀饰场的影响,因而可以利用明暗态调控对其进行有效控制。利用多个EIT窗口的裁剪效应,申请人获得了线宽仅为5MHz左右的超窄线宽共振荧光信号[Laser Phys. Lett. 9, 802 (2012) (影响因子9.97)],并且可以利用明暗态对其进行调控。由于具有高的相干性与单色性,这种可量子调控的超窄荧光在精密测量与量子信息方面具有重要价值。在此基础上,申请人利用两个EIT窗的相互作用,在实验上获得可控的六波信号,荧光信号以及超窄荧光信号[Scientific Reports 3, 3417 (2013);Laser Phys. Lett. 10, 095402 (2013)]同时,在申请人所提出的实验方案中,缀饰场之间可以通过空间干涉诱导出电磁诱导光栅(EIG),其光子带隙对于探测场的强布拉格反射作用将产生另一种多波混频发生机制。当明态和暗态共振被分别满足时,EIG的折射率对比度会有很大的变化范围,反射产生的多波混频信号强度也随之会有很大的变化范围,因而借助于EIT光子带隙和EIA光子带隙的反射作用,可以利用改变探测场入射角度的方式对多波混频信号的强度进行有效相位调控。利用明暗态调控多波混频的方法,可以实现对于以多波混频过程作为纠缠光子源的量子信息过程进行调控,其在长距离量子通信,量子成像等方面具有重要作用,因而在对于我国抢占量子信息技术领域的制高点具有重要意义。
Selected Publications: 

 [1]      Z.Y. Zhao, Z.G. Wang , P.Y. Li, G.P. Huang, N. Li, Y.Q. Zhang, Y.Q. Yan, and Y. P. Zhang, "Opening Fluorescence and Four-Wave Mixing via Dual Electromagnetically Induced Transparency Windows", Laser Phys. Lett. 9, 802 (2012).

[2]      Yanpeng Zhang, Zhiqiang Nie, Zhiguo Wang, Changbiao Li, Feng Wen, and Min Xiao, "Evidence of Autler-Townes Splitting in High-Order Nonlinear Processes", Opt. Lett. 35, 3420 (2010).

[3]      Yanpeng Zhang, Peiying Li, Huaibin Zheng, Zhiguo Wang, Haixia Chen, Changbiao Li, Ruyi Zhang and Min Xiao,"Observation of Autler-Townes splitting in six-wave mixing", Opt. Express 19,7769 (2011).

[4]      Peiying Li, Zhengyang Zhao, Zhiguo Wang, Yiqi Zhang, Huayan Lan, Haixia Chen, Huaibin Zheng, and Yanpeng Zhang, "Phase control of bright and dark states in four-wave mixing and fluorescence channels", Appl. Phys. Lett. 101, 081107 (2012).

[5]      Yaqi Yan, Zhenkun Wu, Jinhai Si, Lihe Yan, Yiqi Zhang, Chenzhi Yuan, Jia Sun, and Yanpeng Zhang, “Investigations on Odd-Order Nonlinear Susceptibilities in Atomic Vapors” , Annals of Physics 333, 307 (2013).

[6]      Huaibin Zheng, Xun Zhang, Jia Sun, Changbiao Li, Zhaoyang Zhang, Haixia Chen and Yanpeng Zhang, "Dressed Four-wave mixing from upper branch in a sodium atomic vapor", IEEE J. Quantum Electron. 49, 122 (2013).

[7]      Changbiao Li, Huaibin Zheng, Yanpeng Zhang, Zhiqiang Nie, Jianping Song, and Min Xiao, "Observation of enhancement and suppression of four-wave mixing processes", Appl. Phys. Lett. 95, 041103 (2009).

[8]      Huaibin Zheng, Yanpeng Zhang, Utsab Khadka, Ruimin Wang, Changbiao Li, Zhiqiang Nie, and Min Xiao, "Modulating the multi-wave mixing processes via the polarizable dark states", Opt. Express 17, 15468 (2009).

[9]      Zhiguo Wang, Yanpeng Zhang, Haixia Chen, Zhenkun Wu, Yuxin Fu, and Huaibin Zheng, "Enhancement and suppression of two coexisting six-wave mixing processes", Phys. Rev. A 84, 013804 (2011).

[10]  Zhiguo Wang, Peiying Li, Huaibin Zheng, Suling Sang, Ruyi Zhang, Yanpeng Zhang, and Min Xiao, "Interference of three multi-wave mixings via electromagnetic induced transparency", J. Opt. Soc. Am. B 28, 1922 (2011).

[11]  Yuanyuan Li, Gaoping Huang, Dan Zhang, Zhenkun Wu, Yiqi Zhang, and Yanpeng Zhang, “Density control of dressed four-wave mixing and super-fluorescence”, IEEE J. Quantum Electron. 50, 25 (2014).  (Selected as Front Cover of JQE)

[12]  Utsab Khadka, Yanpeng Zhang, and Min Xiao, "Control of multi-transparency windows via dark-state phase manipulation", Phys. Rev. A 81, 023830 (2010).

[13]  Zhiqiang Nie, Yanpeng Zhang, Yan Zhao, Chenzhi Yuan, Changbiao Li, Rui Tao, Jinhai Si and Chenli Gan, "Enhancing and suppressing four-wave mixing in electromagnetically induce transparency window", J. Raman Spectrosc. 42, 1 (2011).

[14]  Changbiao Li, Yanpeng Zhang, Zhiqiang Nie, Yigang Du, Ruimin Wang, Jianping Song, and Min Xiao, "Controlling enhancement and suppression of four-wave mixing via polarized light", Phys. Rev. A 81, 033801 (2010).

[15]  Huaibin Zheng, Utsab Khadka, Jianping Song, Yanpeng Zhang, and Min Xiao, "Measurement of ac-Stark Shift by a Two-Photon Dressing Process via Four-Wave Mixing", Europhys. Lett. 93, 23002 (2011).

[16]  Ning Li, Zhengyang Zhao, Haixia Chen, Peiying Li, Yueheng Li, Yan Zhao, Guozhen Zhou, Shuqiao Jia, Yanpeng Zhang, "Observation of dressed odd-order multi-wave mixing in five-level atomic medium", Opt. Express 20, 1912 (2012).

[17]  Zhiguo Wang, Huaibin Zheng, Haixia Chen, Peiying Li, Suling Sang, Huayan Lan, Changbiao Li, Yanpeng Zhang, "Polarized Suppression and Enhancement of Six-wave Mixing in Electromagnetically Induced Transparency Window", IEEE J. Quantum Electron. 48, 669 (2012).

[18]  Peiying Li, Huaibin Zheng, Yiqi Zhang, Jia Sun, Changbiao Li, Gaoping Huang, Chaoyang Zhang, Yuanyuan Li, and Yanpeng Zhang,  “Controlling the transition of bright and dark states via scanning dressing field”, Opt. Materials 35, 1062 (2013).

[19]  Zhenkun Wu, Chenzhi Yuan, Zhaoyang Zhang, Huaibin Zheng, Shuli Huo, Ruyi Zhang, Ruimin Wang, Yanpeng Zhang, "Observation of eight-wave mixing via electromagnetically induced transparency", Europhys. Lett. 94, 64005 (2011).

[20]  Ruimin Wang, Zhenkun Wu, Suling Sang, Jianping Song, Huaibin Zheng, Zhiguo Wang, Changbiao Li, and Yanpeng Zhang, "Coexisting polarized four-wave mixings in two-level atomic system", J. Opt. Soc. Am. B 28, 2940 (2011).

[21]  Changbiao Li, Yanpeng Zhang, Huaibin Zheng, Zhiguo Wang, Haixia Chen, Suling Sang, Ruyi Zhang, Zhenkun Wu, Liang Li, Peiying Li,"Controlling cascade dressing interaction of four-wave mixing image", Opt. Express 19,13675 (2011).

[22]  Zhiguo Wang, Zhengyang Zhao, Peiying Li, Jiamin Yuan, Huayan Lan, Huaibin Zheng, Yiqi Zhang, and Yanpeng Zhang, “Observation of angle-modulated switch between enhancement and suppression of nonlinear optical processes”, Opt. Express 21, 5654 (2013).

[23]  Zhiguo Wang, Peiying Li, Zhaoyang Zhang, Chengjun Lei, Furong Lei, Haixia Chen, and Yanpeng Zhang, “Comparison of Ultra-narrow Fluorescence and Four-wave Mixing in Electromagnetically Induced Transparency Windows”, IEEE Photonics J. 5, 2600311 (2013).

[24]  Jia Sun, Peiying Li, Gaoping Huang, Yunzhe Zhang, Dan Zhang, Hao Tian, Heqing Huang, and Yanpeng Zhang, Comparison of two two-photon dressed rules in multi-wave mixing”, IEEE Photonics J. 6, 6100109 (2014).


      
                          FWM 抑制增强的演化图                                                                                                                                                          FWM一级与二级AT 分裂

       
 
(c) 光子带隙调控多波混频离散空间孤子


我们率先发现对多波混频的调控不仅可以在频域进行,而且可以在空间域中进行。当多波混频信号在传输过程中的非线性和固有的衍射互相抵消时,其就可以形成空间孤子。但是空间孤子的形成要求有很强的非线性。为此申请人立足于在EIT增强非线性方面的长足优势,利用在相位共轭多波混频配置中的多波混频信号与多束泵浦光之间较大的空间交叠面积这一特点,使泵浦光的耦合效应造成的EIT对多波混频信号的非线性自Kerr和交叉Kerr系数得到明显的增强,进而有效增强多波混频信号的空间非线性调制,最终形成空间孤子。同时,频率相同的缀饰场之间由于具有一定的夹角,因而其可以通过干涉诱导出电磁诱导光栅,产生光子带隙,从而在通过光子带隙的反射产生多波混频的同时在空间上周期性地调制多波混频信号,使其具有周期性的强度分布,形成离散空间孤子。申请人提出的实验方案中的空间孤子有四种良好的调控特性。首先,通过改变探测光场和缀饰光场的失谐量,强度等光学参量,可以有效地改变明态和暗态的共振位置或使系统在明态和暗态共振之间进行转换,实现非线性自Kerr和交叉Kerr系数的数值和符号调控,进而使多波混频信号具有可调控的聚焦和散焦非线性。特别是利用Kerr效应,可以使多波混频光束在空间上由于交叉相位调制效应而产生移动、分裂和旋转特性,利用该特性可以定量测量出交叉Kerr折射率并观测到强泵浦场对该折射率的增强效应[Zhang et. al., Phys. Rev. A 80, 013835 (2009); Phys. Rev. A 80, 055804 (2009)]。基于这种空间调制效应,申请人在实验上对全光开关,路由和波分复用进行了原理性研究[OE 18, 899 (2010)]。其次,该实验方案中存在多束缀饰场,它们可以相互干涉形成多对可调控的光栅状和涡旋状的空间干涉强度分布模式,进而诱导出具有空间周期性折射率分布的电磁诱导光栅(EIG)和具有空间涡旋状折射率分布的相位模板。对于前者,由于EIG中的光子带隙,探测光在传播过程中将产生明显的布拉格反射,多波混频信号作为这种反射信号,其将产生空间周期性的调制,进而形成偶极[Phys. Rev. Lett. 106, 093904 (2011)],带隙[Phys. Rev. A 82, 053837 (2010)]空间孤子。对于后者,四波混频的强度和相位则可以被诱导出空间涡旋分布的模式,形成涡旋孤子[OE 18, 10963 (2010)]。通过控制明态和暗态共振,申请人实现了对EIG的折射率对比度的控制,从而可以有效调控光子带隙的宽度。同样通过控制明态和暗态共振,涡旋相位模板中的相位分布也可以得到有效调控。在理论上,申请人课题组还提出了利用这种EIG来实现Talbot自成像的方法。申请人课题组还利用共存的八个四波混频信号,在实验上产生了八分量的空间孤子[OE 20, 14168 (2012)]和全光循环器[Laser Phys. Lett. (2014)]。申请人关于涡旋孤子的成果被德国耶拿大学光学与量子电子学研究中心的Ch.Spielmann教授在国际顶级物理学刊物[Nature Phys 8, 743 (2012)]中引用并做具体评价。第三,在该实验方案中,由于存在两组缀饰场,因而其可以诱导出结构和空间取向可调的两个电磁诱导光栅。在一种空间取向下,得到了由两个四波混频信号组成的空间取向垂直的孤子对;而在另一种取向下,两个电磁诱导光栅可以有效地组成一个电磁诱导晶格(EIL),其具有空间二维周期性的折射率分布,因而形成了具有二维周期性强度调制的晶格孤子[Laser Phys. Lett. 10, 055406 (2013)],进而获得多光束干涉Dirac锥导致的光子拓扑绝缘体。当调节探测场和缀饰场的失谐,使得EIA条件得到满足时,EIG和EIL的折射率对比度很大,这种EIA光子带隙具有很大的带隙宽度,且此时多波混频信号可以得到最大的增强。这种条件下,可以得到具有很高稳定性的多波混频光孤子。第四,在申请人提出的研究系统中,还存在着不同阶非线性之间的竞争。该课题组利用一阶与三阶非线性的竞争,在理论上获得了多核且稳定的涡旋孤子的完整演化[Opt. Lett. 37, 4507(2012)]。

此外,我们还利用三阶与五阶非线性的竞争,首次在实验上实现了稳定的光学凝聚态孤子[Phys. Rev. A 88, 063828 (2013);Phys. Rev. A 88, 013847 (2013)-PRA万花筒文章]和PT不可逆光二极管。同时通过对多波混频的量子角动量空间调控,可以获得在空间全光通信,光学图像处理的过程中的灵活可控的光学模式分布。此外,利用脉冲光实验系统,申请人课题组已经在实验上实现了级联四波混频,并通过将前级四波混频信号的产生光注入后级四波混频实现光学参量放大(OPA)产生了Stokes与Anti-Stokes超荧光。控制明暗态可以实现对超荧光的抑制与增强,进一步通过研究两个超荧光信号的非经典关联性,实现了明暗态可控光子对的产生。这种对脉冲光明暗态可控光子对的研究对长距离量子通信纠缠光子源的制备具有重要意义。
Selected Publications:

 [1]      Yanpeng Zhang, Zhiguo Wang, Zhiqiang Nie, Changbiao Li, Haixia Chen, Keqing Lu, and Min Xiao, "Four-wave mixing dipole solitons in laser-induced atomic gratings", Phys. Rev. Lett. 106, 093904 (2011).

[2]      Yanpeng Zhang, Chenzhi Yuan, Yiqi Zhang, Huaibin Zheng, Haixia Chen, Changbiao Li, Zhiguo Wang, and Min Xiao, “Surface solitons of four-wave mixing in electromagnetically induced lattice”, Laser Phys. Lett. 10, 055406 (2013).

[3]      R. M. Wang, J. L. Che, X. P. Wang, H. Y. Lan, Z. K. Wu, Y. Q. Zhang, and Y. P. Zhang, “Controllable optical vortexon of four-wave mixing and the applications”, Laser Phys. Lett. (accepted). (SCI Impact Factor: 9.97).

[4]      Yiqi Zhang, Milivoj R. Belic, Zhenkun Wu, Chenzhi Yuan, Ruimin Wang, Keqing Lu, and Yanpeng Zhang, “Multicharged optical vortices induced in a dissipative system”, Phys. Rev. A 88, 013847 (2013).   (PRA Kaleidoscope Images: July 2013)

[5]      Zhenkun Wu, Yiqi Zhang, Chenzhi Yuan, Feng Wen, Huaibin Zheng, Yanpeng Zhang, “Cubic-quintic condensate solitons in four-wave mixing” , Phys. Rev. A 88(6), 063828 (2013).

[6]      Ruimin Wang , Zhenkun Wu, Yiqi Zhang, Chaoyang Zhang, Chenzhi Yuan, Huaibin Zheng, Yuanyuan Li, Jinhai Zhang, and Yanpeng Zhang, "Observation of multi-component spatial vector solitons of four-wave mixing", Opt. Express 20, 14168 (2012).

[7]      Yiqi Zhang, Zhenkun Wu, Chenzhi Yuan, Xin Yao, Keqing Lu, Milivoj Belic, and Yanpeng Zhang, "Optical vortices induced in nonlinear multi-level atomic vapors", Opt. Lett. 37, 4507(2012).

[8]      Suling Sang, Huaibin Zheng, Zhiguo Wang, Feng Wen, Yiqi Zhang, Peiying Li, Changbiao Li, Yanpeng Zhang, "Multi-dressing Interaction of Four-wave Mixing Image in Three-level Atomic System", J. Opt. Soc. Am. B 29, 1920 (2012).

[9]      Jin Li, Wenbo Liu, Liang Li, Yan Zhao, Hua Liu, Taikun Liu, Huaibin Zheng, and Yanpeng Zhang, "All-optical Routing and Space Demultiplexer via Four-wave Mixing Spatial Splitting ", Appl. Phys. B 106, 365(2012).

[10]  Yanpeng Zhang, Zhiguo Wang, Huaibin Zheng, Chenzhi Yuan, Changbiao Li, Keqing Lu, and Min Xiao, "Four-wave mixing gap solitons", Phys. Rev. A 82, 053837 (2010).

[11]  Changbiao Li, Suling Sang, Yiqi Zhang, Jia Sun, Zhaoyang Zhang, Xuyang Wang, Huaibin Zheng, Yuanyuan Li, and Yanpeng Zhang, "Spatial Interplay of Two Four-Wave Mixing Images", J. Opt. Soc. Am. B 29, 3015 (2012).

[12]  Suling Sang, Zhenkun Wu, Jia Sun, Huayan Lan, Yiqi Zhang, Xun Zhang, Yanpeng Zhang, "Observation angle switching of dressed four wave mixing images", IEEE Photonics J. 4, 1973 (2012).

[13]  Yiqi Zhang, Xin Yao, Chenzhi Yuan, Peiying Li, Jiamin Yuan, Weikang Feng, Shuqiao Jia, and Yanpeng Zhang, "Controllable multi-wave mixing Talbot effect", IEEE Photonics J. 4, 2057 (2012).

[14]  Yanpeng Zhang, Zhiqiang Nie, Yan Zhao, Changbiao Li, Ruimin Wang, Jinhai Si, and Min Xiao, "Modulated vortex soliton of Four-wave mixing", Opt. Express 18, 10963 (2010).

[15]  Yanpeng Zhang, Cuicui Zuo, Huaibin Zheng, Changbiao Li, Zhiqiang Nie, Jianping Song, and Min Xiao, "Controlled spatial beamsplitter using four-wave mixing images", Phys. Rev. A , Brief Report, 80, 055804 (2009).

[16]  Yanpeng Zhang, Zhiqiang Nie, Huaibin Zheng, Changbiao Li, Jianping Song, and Min Xiao, "Electromagnetically-Induced Spatial Nonlinear Dispersion in Four-wave Mixing", Phys. Rev. A 80, 013835 (2009).

[17]  Zhiqiang Nie, Huaibin Zheng, Yanpeng Zhang, Yan Zhao, Cuicui Zuo, Changbiao Li, Hong Chang, and Min Xiao, "Optical switching and routing via four-wave mixing spatial shift", Opt. Express 18, 899 (2010).

[18]  Jin Li, Wenbo Liu, Liang Li, Yan Zhao, Hua Liu, Taikun Liu, Huaibin Zheng, and Yanpeng Zhang, "All-optical Routing and Space Demultiplexer via Four-wave Mixing Spatial Splitting ", Appl. Phys. B 106, 365 (2012).

[19]  Zhiguo Wang, Yanpeng Zhang, Peiying Li, Suling Sang, Chenzhi Yuan, Huaibin Zheng, Changbiao Li, and Min Xiao, "Observation of Polarization-Controlled Spatial Splitting of Four-Wave Mixing in a Three-Level Atomic System", Appl. Phys. B 104, 633 (2011).

[20]  Ruimin Wang, Yigang Du, Yanpeng Zhang, Huaibin Zheng, Zhiqiang Nie, Changbiao Li, Yuanyuan Li, Jianping Song, and Min Xiao, "Polarization spectroscopy of dressed four-wave mixing in a three-level atomic system", J. Opt. Soc. Am. B 26, 1710 (2009).

[21]  Yigang Du, Yanpeng Zhang, Cuicui Zuo, Changbiao Li, Zhiqiang Nie, Huaibin Zheng, Meizhen Shi, Ruimin Wang, Jianping Song, Keqing Lu, and Min Xiao, "Controlling Four-wave Mixing and Six-wave Mixing in Multi-Zeeman Atomic System with Electromagnetically Induced Transparency", Phys. Rev. A 79, 063839 (2009).

[22]  Huaibin Zheng, Yanpeng Zhang, Zhiqiang Nie, Changbiao Li, Hong Chang, Jianping Song, and Min Xiao, "Interplay among multi-dressed four-wave mixing processes", Appl. Phys. Lett. 93, 241101 (2008).

[23]  Keqing Lu, Yanpeng Zhang, Tiantong Tang and Bo Li,  "Incoherenty coupled steady-state soliton pairs in biased photorefractive-photovoltaic materials", Phys. Rev. E 64, 056603 (2001).

[24]  Keqing Lu, Tiantong Tang and Yanpeng Zhang, "One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field ", Phys. Rev. A 61, 053822 (2000).

[25]  Gaoping Huang, Jia Sun, Weikang Feng, Jiamin Yuan, Zhenkun Wu, Jianan He, Yiqi Zhang, Yanpeng Zhang, “Observations of Autler-Townes Spatial Splitting of Four-wave Mixing Image”, Appl. Phys. B 112, 267 (2013)

[26]  Yiqi Zhang, Milivoj Belic, Huaibin Zheng, Haixia Chen, Changbiao Li, Jianping Song, and Yanpeng Zhang, “The Nonlinear Talbot Effect from Rogue Waves”, Phys. Rev. E 89, 032902 (2014).

 

       
                         空间旋转孤子                                                                                空间偶极孤子

                  
(a)电磁诱导光栅EIG,(b)具有二维周期性的(b1)折射率电磁诱导晶格EIL(b2)电磁诱导能级晶格态,(c)电磁诱导晶格的色散关系

          

                空间光位移实验光路图

 

 

 (d) 飞秒、阿秒相位共轭极化拍研究

当前信息科学已进入Tbit时代,信息的传输、处理以Tbit/s为标志,亦即以皮秒为时间尺度。物理、化学、生物、材料等学科的研究也已深入到纳米、分子和原子尺度。在这个层次上,绝大多数现象都是超快过程。飞秒及阿秒超快科学,由于在揭示纳米、分子、原子尺度的超快动力学过程方面的重要性,因此成为国际科学前沿之一。因而如何在飞秒及阿秒尺度上探测和调控微观过程是量子调控需要解决的一个重要问题。而超快光子技术兼具“快”、“强”、“微”三个特点,其已经成为探测和调控原子、分子、超分子和团簇等不同层次上的结构、反应的机理和动态过程中不可替代手段和工具。利用飞秒和阿秒相位共轭极化拍方法研究物质的超快动力学过程是近年来国际上重要的前沿课题之一。而阿秒科学、频率梳和高次谐波强场的研究更是热点中的热点,美、英、法、德、日等国相继建立了自己的“飞秒和阿秒计划”项目。飞秒和阿秒相位共轭极化拍方法开创了研究某些超快过程的另一不用超短激光脉冲的新途径,科学意义重大。目前激光振荡腔直接产生的最短光脉冲可小于5.4飞秒(两周期亚脉冲),而日本科学家最终可获得3.4飞秒的超短脉冲。利用亚飞秒软X射线脉冲可以在时间领域以阿秒尺度直接探索样品的超快动力学过程。但十几年前,一种不使用超短光脉冲的间接方法,也就是利用宽带多模非变换限定的噪声光的方法,在研究物质的动力学过程获得了超短的时间分辨率,其时间分辨率由噪声光的超快相关时间决定,而与脉宽(纳秒)无关。色锁噪声光提供了一种可用于探测原子和分子的动力学过程的独特技术手段,其兼有传统的频域窄带光谱和时域飞秒超短脉冲光谱的特点。因此从某种意义上说,色锁噪声光是一种介于连续光源和超短脉冲激光之间的中间体。利用色锁噪声光,可以将多波混频过程的时间分辨率推进至飞秒及阿秒尺度,从而为量子调控中被调控体系的状态探测提供更精确的实验手段。
噪声光源可以在宽带源的整个带宽内振荡,其典型带宽为100 cm-1,相关时间为100fs (半高宽)。但是,即使多模宽带激光源的自相关时间类似于相同带宽的变换极限飞秒激光脉冲,二者仍有本质的不同。两种光源最基本的不同是变换极限飞秒激光脉冲的光谱是相位相干的,而宽带光的光谱是相位随机的。噪声光提供了一种可用于探测原子和分子的动力学过程的独特技术手段,其兼有传统的频域窄带光谱和时域飞秒超短脉冲光谱的特点。而这三种方法显著的区别在于拥有不同的激发源。连续光波技术利用窄带激光源,其单频特性能够被直接用于探测样品的频谱特性,但是缺点就是全部时间分辨率特征被丢失,因而时间信息必须通过频谱信息的分析来获得。超短脉冲技术和连续光波技术形成强列的反差。在超短脉冲中,激发光源的频谱中有许多频率成份出现,因而必须通过锁相的方式使这些频率成份形成一个短脉冲。即所有的频率成份之间必须有精确的位相关系,超短脉冲才能完美地应用于直接的时间测量。但负面的结果是精确分辨的频谱信息必须通过时间信息的分析来确定。而锁相的要求造成直接探测样品频谱能力的丧失(粗略的光谱探测是可能的,因为真实的超短脉冲激光并不具有无限宽的频谱范围)。这些频谱信息通常以量子拍频的方式出现,在有很多振荡存在时,该方式变得十分复杂。噪声光具有和超短脉冲激光类似的频谱,但重要的区别是它是完全非锁相的。即每一频率成份的位相是互相独立的。因此每一频率成份充当一个独立的连续光波源。这表明噪声光来自单频连续光波源的无关联叠加。这种随机叠加形成了具有时间随机函数的光场。从本质上讲噪声光是色锁的,因为它的每一种频率成份都是自关联的,而该频率成份和其他频率成份是不关联的。色锁使噪声光比超短脉冲激光具有更直接的探测精细频谱特征的能力(每一量子态的探测,是独立的,不相干的),比连续光波源具有更直接的探测时间特征的能力。但其缺点是无论进行频谱特征还是时间特征的直接探测都离不开大量的数据分析。而极化拍频起源于宏观极化强度之间的干涉,它和起源于波函数几率幅干涉的量子拍频相干控制有着密切的关系,后者本质上更经典一些。
在我们的调控系统中,由于存在多个共存的多波混频信号,他们共用着相同的原子相干,因而之间存在强烈的相互作用。在微观机制上面,多个高阶极化信号的存在将引起他们之间的相互干涉。如果在他们之间通过时间延迟引入相位差,将形成阿秒和频极化拍。在此思路基础上,我们课题组在在国际上首先提出并进行了深入研究了飞秒差频与阿秒和频相位共轭极化拍频光谱术[Phys. Rev. A 61, 023809 (2000);Phys. Rev. A 61, 053819 (2000);Phys. Rev. A 63, 043802 (2001)等]。这样,在利用EIT增强的非线性多波混频系统中,我们就可以通过控制暗态和明态共振来实现对阿秒和频极化拍的控制。我们在激光场为混沌、相位扩散和实高斯场模型情形下,基于高阶相干函数理论,首次提出了阿秒(844 as)[ Phys. Rev. A 72, 013812 (2005); Phys. Rev. A 73, 053801 (2006)]和频的多普勒增宽相位共轭极化拍频技术以及喇曼或瑞利增强相位共轭极化拍频技术,宽带阿秒极化拍频的零差探测强度呈现共振和非共振过程的交叉干涉,辐射场与物质间混合型太赫兹失谐振荡。基于色锁的纳秒非相干光或相锁的飞秒相干光的时频二维瞬态相位共轭四波混频和六波混频(SWM)的相干控制技术是很有希望被用于探索双原子绘景中阿秒极化拍频的高位里德堡态偶极或Van der Waals局域堵塞效应和四波混频慢光现象。我们的阿秒和频极化拍相干激光控制工作 [Phys. Rev. A 79, 023802 (2009); Phys. Rev. A 71, 023802 (2005)]一经发表立即被国际著名前沿热点研究虚拟杂志超快科学收录。我们对相位共轭极化拍频光谱术的研究已形成一定的特色,引起了国际上许多著名课题组的极大关注与肯定。对于飞秒差频与阿秒和频相位共轭极化拍频光谱术,对更加深入的探测微观体系中的超快过程有很大促进作用,无论在基础研究还是技术发展方面都有重要意义。
  
Selected Publications:

[1]      Yanpeng Zhang, Chenli Gan, Shahid Munir Farooqi, Keqing Lu, Xun Hou and Tiantong Tang, " Four-level polarization beats with broadband noisy light ", J. Opt. Soc. Am. B 19, 1204 (2002).

[2]      Yanpeng Zhang, Cid B. de Araújo, and Edward E. Eyler, "Higher-order correlation on polarization beats in Markovian stochastic fields ", Phys. Rev. A 63, 043802 (2001).

[3]      Yanpeng Zhang, Liqun Sun, Tiantong Tang and Panming Fu, "Effects of field-correlation on polarization beats", Phys. Rev. A 61, 053819 (2000).

[4]      Yanpeng Zhang, Tiantong Tang, Liqun Sun and Panming Fu, "Effects of fourth-order coherence on ultrafast modulation spectroscopy", Phys. Rev. A 61, 023809 (2000).

[5]      Yanpeng Zhang, Liqun Sun, Tiantong Tang and Panming Fu, "Fourth-order interference on polarization beats in a four-level system", J. Opt. Soc. Am. B 17, 690 (2000).

[6]      Panming Fu, Xi Mi, Zuhe Yu, Qian Jiang, Yanpeng Zhang and Xiaofeng Li, "Ultrafast modulation spectroscopy in a cascade three-level system", Phys. Rev. A 52, 4867 (1995).

[7]      Yanpeng Zhang, Chenli Gan, Chuangshe Li, Keqing Lu, Xun Hou, and Jovica Stanojevic, “Twin Markovian field correlation on four-level attosecond polarization beats”, J. Phys. B 37, 1751 (2004).

[8]      Yanpeng Zhang, Chenli Gan, Jianping Song, Xiaojun Yu, Ruiqiong Ma, Hao Ge, Chuangshe Li, and Keqing Lu, "Attosecond sum-frequency Raman-enhanced polarization beats using twin phase-sensitive color locking noisy lights", J. Opt. Soc. Am. B 22, 694 (2005).

[9]      Y.P. Zhang, C.L. Gan, J.P. Song, X.J. Yu, R.J. Ma, H. Ge, C.S. Li, and K.Q. Lu, "Coherent laser control in attosecond sum-frequency polarization beats using twin noisy driving fields", Phys. Rev. A 71, 023802 (2005).

[10]  Yanpeng Zhang, Chenli Gan, Long Li, Ruiqiong Ma, Jianping Song, Tong Jiang, Xiaojun Yu, Chuangshe Li, Hao Ge, and Keqing Lu, "Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights", Phys. Rev. A 72, 013812 (2005).

[11]  Yanpeng Zhang, Chenli Gan, and Min Xiao, "Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields", Phys. Rev. A 73, 053801 (2006).

[12]  Chenli Gan, Yanpeng Zhang, Zhiqian Nie, Yan Zhao, Keqing Lu, Jinhai Si, and Min Xiao, "Competition between Raman and Rayleigh-enhanced four-wave mixings in attosecond polarization beats", Phys. Rev. A 79, 023802 (2009).

[13]  Y. Zhao, Z.Q. Nie, Y.P. Zhang, C.B. Li, C.Z. Yuan, X.N. Li, R.M. Wang, K.Q. Lu, and C.L. Gan, "Coexisting Brillouin, Rayleigh and Raman-enhanced four-wave mixings", J. Opt. Soc. Am. B 27, 863 (2010).

[14]  Yiqi Zhang, Zhenkun Wu, Huaibin Zheng, Zhiguo Wang, Yunzhe Zhang, Hao Tian, and Yanpeng Zhang, Controllable nonreciprocity of six-wave mixing by a moving electromagnetically induced grating”, Laser Phys. 24 (2014).

  

                         

(e)固体原子相干系统与全光集成量子芯片
量子调控在固态体系中的实现,与量子计算和量子通信这两个前瞻性研究课题的最终实用化,也就是量子芯片的研究有着密不可分的关系。固态系统中的多波混频过程调控的深入研究对开发有效的产生纠缠光子对的量子芯片有着重要的促进作用。
基于对这一应用前景的考虑,申请人考虑在原子相干调控多波混频方面的坚实基础,选定Pr:YSO晶体与单量子点作为多波混频量子调控固态化的两种重要介质。Pr:YSO晶体兼具固态化和吸收线宽较窄两种优点,其中可以产生可调控的原子相干,因而在利用量子干涉控制新型光子器件中的光与物质相互作用方面有着重要的潜在价值。在此基础上,申请人结合其对多波混频信号调控的理论和实验研究,设计出了Pr:YSO晶体中明暗态调控多波混频的方案,并藉此产生精确可控的相对强度压缩光。同时,在研究方案中,Pr:YSO晶体中装载于EIT窗口中的两对甚至多对多波混频信号可以用来制备双光子纠缠态,多光子纠缠态和孪生光束等[Zheng et al, Scientific Reports (accepted)]。借助于这种可调控性非常强的纠缠光制备方法和连续变量测量技术,我们可以实现可用于连续变量量子纠缠成像纠缠光量子芯片。其在国防领域有着很大的应用前景。
单量子点纳米晶半导体材料是量子器件固态化的一个很好的介质。量子点(人造“原子”)可用来制造单光子源,而单光子源发射器件是实现量子密码通信的核心器件。申请人在这种介质的光学性能研究方面已经取得了很重要的成果。在实验上研究了化学合成胶体纳米晶体和分子束外延生长的半导体结构的光学特性,测量了胶状Mn:ZnSe(电子能量由ZnSe向二价Mn离子转移的掺杂型结构),CdSe/ZnS(核/壳层结构)单量子点的闪亮现象,聚束和反聚束机制[J. Phys. Chem. C 112, 20200 (2008); Phys. Rev. B, 78, 241301R (2008); Appl. Phys. Lett. 92, 241111 (2008); Appl. Phys. Lett. 96, 151107 (2010)]。在此基础之上,通过精确调节半腔镜的位置,控制处于半腔系统中量子点局部的光模式密度,使量子点内部的电子扩射过程,能级结构,以及闪光现象得以修正和优化。在量子点纳米晶材料中实现多波混频的量子调控。在纳米晶材料中实现可调控的多波混频空间光调制与空间光孤子可以实现全光开关和路由等关键器件。实现固态系统中的多波混频的有效调控,对于利用非线性光学过程产生可用于量子通信和量子计算的量子芯片有着重要的意义。而申请人以及其领导的课题组对原子介质中多波混频过程成熟的理论分析和优越的实验技术则是完成单量子点材料和Pr:YSO晶体中的多波混频的量子调控的核心支持。结合对单量子点与Pr:YSO晶体的研究,申请人课题组必将在固态全光通信可调控关键器件上有所突破。

 Selected Publications:  

[1]      Huaibin Zheng, Changbiao Li, Huayan Lan, Chengjun Lei, Dan Zhang, Yanpeng Zhang, and Min Xiao, “Seeded Spontaneous Parametric Four-Wave Mixing and Fluorescence of Pr3+:YSO”, Scientific Reports (accepted).

[2]      Changbiao Li, Lele Wang, Huaibin Zheng, Huayan Lan, Chengjun Lei, Dan Zhang, Min Xiao, and Yanpeng Zhang, “All-optically controlled fourth- and sixth-order fluorescence processes of Pr3+:YSO”, Appl. Phys. Lett. 104, 051912 (2014).

[3]      Yanpeng Zhang, Chenli Gan, David Battaglia, Javed Muhammad, Xiaogang Peng, and Min Xiao, "Enhanced Fluorescence Intermittency in Mn-doped single ZnSe Quantum Dot", J. Phys. Chem. C 112, 20200(2008).

[4]      Yanpeng Zhang, Javed Muhammad, Chenli Gan, Carl Rodriguez, Sandeep Singh and Min Xiao, "Controlled fluorescence intermittency of CdSe-ZnS QD in a Half-cavity", Phy.Rev. B (Rapid Commun) 78, 241301(2008).

[5]      Lihe Yan, Jinhai Si, Feng Chen, Sen Jia, Yanpeng Zhang, and Xun Hou, "Pump power dependence of Kerr signals in femtosecond cross pump-probe optical Kerr measurements", Opt. Express 17, 21509 (2009).

[6]      Yiqi Zhang, Zhenkun Wu, Xin Yao, Zhaoyang Zhang, Haixia Chen, Huaibin Zheng, Yanpeng Zhang, “Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media”, Opt. Express 21, 29338 (2013).

[7]      Yiqi Zhang, Milivoj Belic, Huaibin Zheng, Zhenkun Wu, Yuanyuan Li, Keqing Lu, and Yanpeng Zhang, “Fresnel diffraction patterns as accelerating beams”, Europhys. Lett.104, 34007 (2013).

[8]      R. M. Wang, J. L. Che, X. P. Wang, H. Y. Lan, Z. K. Wu, Y. Q. Zhang, and Y. P. Zhang, “Controllable optical vortexon of four-wave mixing and the applications”, Laser Phys. Lett. (accepted).

[9]      Yuanyuan Li, Li Li, Yixin Lu, Xiaoxia Zhao, Kewei Xu, Yiqi Zhang, and Yanpeng Zhang,“Selective reflection of Airy beam at an interface between dielectric and homogeneous atomic medium”, Opt. Express 21, 8311 (2013).

[10]  Zhiguo Wang, Zhengyang Zhao, Peiying Li, Jiamin Yuan, Huayan Lan, Huaibin Zheng, Yiqi Zhang, and Yanpeng Zhang, “Observation of angle-modulated switch between enhancement and suppression of nonlinear optical processes”, Opt. Express 21, 5654 (2013).

[11]  C. Li, X. Shi, J. Si, F. Chen, T. Chen, Y. Zhang, X. Hou, "Photoinduced multiple microchannels inside silicon produced by a femtosecond laser", Appl. Phys. B 98, 377 (2010).

[12]  Chenli Gan, Yanpeng Zhang, Min Xiao, David Battaglia, and Xiaogang Peng, "Fluorescence Lifetime of Mn-doped ZnSe Quantum Dots With Size Dependence", Appl. Phys. Lett. 92, 241111 (2008).

[13]  Ruimin Wang, Yanpeng Zhang, Chenli Gan, Javed Muhammad, and Min Xiao, "Controlling blinking in multilayered Quantum Dots", Appl. Phys. Lett. 96, 151107 (2010).

 


 
  

                         半腔中单量子点的荧光强度的控制                                                     简化了的掺三价PR离子的YSO晶体原子能级结构, (b)空间几何配置示意图

 

(f)里德堡态局域堵塞多波混频及其在量子逻辑门方面的应用
 

我们在氢分子及其同位素的分解能(首次得到0.004波数的精度)和电离能(首次得到0.001波数的精度)的超高精细测量方面取得了关键性的成果:顺利完成了193nm+193nm+677nm第二解离极限实验、EF态v=0和6间较准的202nm+202nm+555nm和193nm+193nm+733nm低里德堡态耗尽实验和较准EF态v=0的202nm+202nm+202nm三光子深紫外实验等三个极赋挑战性的实验。通过用放大后的高分辨率变换限定脉冲激光探测氢分子第二分解极限,申请人获得了氢分子和其离子改善的分解能。通过选择探测分解的原子产物,其首次在实验上观测到振动的连续入口,许多的辅助测量将这个结果和基态连接了起来。分解能准确到0.004-0.026波数,将以前的测量结果改善了3-10倍 [Zhang, et al, Phys. Rev. Lett. 92, 203003 (2004)]。对H2、D2和它们的离子而言新测量的分解能和第一原理的计算结果符合的很好。这个重要成果说明申请人在原子分子科学与精密测量有着很强的理论与实验基础。在此基础上,申请人将在下一阶段的研究中实现在分子EIT窗中对高阶非线性信号的量子调控。
量子计算的实现很大程度上依赖于如何控制量子比特载体间的相互作用。里德堡原子则是一种很有前途的量子比特载体。具体而言,处于里德堡态的原子由于具有很大的极性,因而其相互之间可以存在相当强的范德瓦尔斯和偶极相互作用。这种相互作用可以有效地将原子耦合在一起,使得整个体系与光场的相互作用同非耦合体系比较起来,有了更复杂的集体行为。首先,强的相互作用使得里德堡原子即使在很长的间距内,仍然可以形成长程分子。基于高分辨的激光光谱,申请人参与完成了在超冷里德堡原子气体中对这种分子态的首次观测[Phys. Rev. Lett. 91, 183002 (2003)]。其次,空间局域内一个里德堡态原子的产生,将使得一定空间范围内的原子的能级发生移动,当这种移动超出了激发光的线宽时,其余原子的激发将被有效抑制,因而产生局域堵塞。在实验上,申请人在国际上首次观测到局域激发堵塞现象[Phys. Rev. Lett. 93, 063001 (2004)]。这种特点使得里德堡态具有很强的可控性,因而其在量子逻辑门设计方面有很重要的潜在应用。在该实验中,在宏观样品中所观测到的局域堵塞,和基于平均场模型的原子相互作用计算结果符合地很好。该工作是相对缺乏的量子计算实验领域的重要进展。国际上众多的量子信息学者都对该工作进行了引用与高度评价。
同时,课题组首次在理论上提出了里德堡态体系中的FWM与SWM的产生机理,以及局域堵塞效应对四六波混频的调控机理,其中光场的缀饰效应可以与里德堡态原子之间的范德瓦尔斯作用,偶极作用等一级堵塞及二级堵塞效应产生相互作用。因而可以通过调整原子间距,电场强度对多波混频进行有效调控,以及利用光场缀饰实现反局域堵塞。在此基础上,申请人课题组已经在热原子体系中首次观察到对里德堡FWM及荧光信号的阻塞缀饰效应[J. Chem. Phys. 139, 164316 (2013)]。以及通过控制暗态,获得阻塞的SWM[已经被New J. Phys.录用]和EWM [已投稿至Phys. Rev. Lett]信号。目前,申请人课题组已经在热原子体系中首次观察到里德堡态局域堵塞EIT信号,以及明暗态与里德堡态局域堵塞之间的相互作用;获得了共存的里德堡态FWM,SWM,八波混频 (EWM)以及荧光等多通道窄带信号。通过改变光场的失谐,功率以及通过温度改变原子密度,来调控明暗态,进而达到调控多波混频的目的。更为重要的是,该研究中,多参量可控的多波混频信号作为一种重要的探测手段,可以对里德堡态原子这一量子计算中的比特元进行读出和写入,从而形成完整的量子计算,通信和控制系统。
Selected Publications:
   [1]      Y. P. Zhang, C.H. Cheng, J.T. Kim, J. Stanojevic, and E.E. Eyler, "The Dissociation Energies of Molecular Hydrogen and the Hydrogen Molecular Ion", Phys. Rev. Lett. 92, 203003 (2004).

[2]      D. Tong, S.M. Farooqi, J. Stanojevic, S. Krishnan, Y.P. Zhang, R. Cote, E.E. Eyler, and P.L. Gould, “Local Blockade of Rydberg Excitation in an Ultracold Gas”, Phys. Rev. Lett. 93 , 063001 (2004).

[3]      S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y.P. Zhang, J.R. Ensher, A.S. Estrin, C. Boisseau, R. Cote, E.E. Eyler, and P.L. Gould, “Long-Range Molecular Resonances in a Cold Rydberg Gas”, Phys. Rev. Lett. 91, 183002 (2003).

[4]      Huaibin Zheng, Yan Zhao, Chenzhi Yuan, Zhaoyang Zhang, Junling Che, Yiqi Zhang, Yunguang Zhang, and Yanpeng Zhang, “Dressed multi-wave mixing process with Rydberg blockade”, Opt. Express 21, 11728(2013).

[5]      Cheng Li, Huaibin Zheng, Zhaoyang Zhang, Xin Yao, Yunzhe Zhang, Yiqi Zhang, and Yanpeng Zhang, “Electromagnetically induced transparency and Fluorescence in Blockaded Rydberg atomic system”, J. Chem. Phys. 139, 164316 (2013).

[6]      Yiqi Zhang, Milivoj Belic, Huaibin Zheng, Zhenkun Wu, Keqing Lu, Yuanyuan Li, and Yanpeng Zhang, “Soliton pairs generated through interactions of Airy beams in nonlinear medium ”, Opt. Lett. 38, 4585 (2013).

[7]      Lan Lou, Feng Wen, Mengzhe Qin, Jianan He, Yanpeng Zhang, Min Xiao, “Coherent Control of Multi-Wave Mixing in Atomic Media”, Prog. in Phys. 33, 87 (2013).  (cover paper, invited paper)

[8]      Zhenkun Wu, Yiqi Zhang, Chenzhi Yuan, Feng Wen, Huaibin Zheng, Yanpeng Zhang, “Cubic-quintic condensate solitons in four-wave mixing” , Phys. Rev. A 88(6), 063828 (2013).

[9]      Huaibin Zheng, Changbiao Li, Huayan Lan, Chengjun Lei, Dan Zhang, Yanpeng Zhang and Min Xiao, “Excitation blockade of Rydberg six-wave mixing process”, New J. Phys. (accepted).

[10]  Yanpeng Zhang, Feng Wen and Min Xiao, Quantum Control of Multi-Wave Mixing , (Wiley-Blackwell, 2013).

[11]  Yanpeng Zhang, Zhiqiang Nie and Min Xiao, Coherent Control of Four-Wave Mixing (Springer-Verkag, Berlin, New York, 2011).

[12]  Yanpeng Zhang and Min Xiao, "Multi-Wave Mixing Processes", (Springer-Verkag, New York, 2009).

                         
                                                

     (a)碱金属原子五能级结构图;(b) 多波混频空间几何配置示意图;(c) 里德堡态局域堵塞示意图:(d) 能级移动量随着主量子数和原子半径r的变化的理论计算                                     
 
(g) 环形腔中多波混频量子调控与量子信息处理
  
在理论上,课题组首先建立了多波混频过程与腔之间的耦合方程,通过求解耦合方程,并分析混频信号的真空Rabi分裂,发现了由明暗态腔极子与光缀饰明暗态之间的相互耦合所引起的高阶模式分裂。其次,通过调节明暗态腔极子与光缀饰明暗态之间的竞争,预言了多波混频的双稳,多稳以及真空Rabi分裂同双稳之间的竞争 [Phys. Rev. A 86 063820 (2012)]。在实验上,申请人团队构建了高品质因子的含有Rb原子的环形腔,将多束缀饰场注入该行波腔发生多波混频,并成功实现了多波混频信号与腔的耦合,首次获得了环形腔六波混频[发表在Nature子刊Scientific Reports 4, 3169 (2014)]和腔极子诱导真空增强和抑制现象
课题组在利用原子介质多波混频实现对量子态操作,制备以及控制其演化方面也有许多引人注目的成果。首先,在国际上首次提出了针对多粒子的最大纠缠态判据[Laser Phys. Lett. 10, 045201 (2013)];其次,实验上通过自由空间中的超荧光过程获得了Stokes与Anti-Stokes光子对信号形成的空间光锥[Laser Phys. Lett. 11, 045201 (2014)],进一步实现了荧光光子对之间的噪声关联,为获得高纯度的纠缠光子对奠定了基础;我们还研究了共用探测场的的两个四波混频信号以及探测场之间的三场噪声关联,发现两个四波混频涨落之间的正关联,以及它们与探测场之间的涨落的反关联[Opt. Lett. 35, 3420 (2010)];在四能级系统中,借助于EIT,研究了自发产生的三对非经典光场[Phys. Rev. A 77, 033816 (2008)];以及通过级联两三阶和五阶非线性过程,实现对参量四波混频进行单注入非相敏和双注入相敏量子放大[Scientific Reports 3, 1885 (2013)];这些都为申请人课题组在环形腔以及全固态中实现多波混频量子调控奠定了坚实基础。 
Selected Publications:

 [1]      Xin-wei Zha, Chenzhi Yuan, and Yanpeng Zhang, "Generalized Criterion of Maximally Multi-Qubit Entangled state", Laser Phys. Lett. 10, 045201 (2013).

[2]      Haixia Chen, Mengzhe Qin, Yiqi Zhang, Xun Zhang, Feng Wen, Jianming Wen, and Yanpeng Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble”, Laser Phys. Lett. 11, 045201 (2014).

[3]      Huaibin Zheng, Xun Zhang, Zhaoyang Zhang, Yaling Tian, Haixia Chen, Changbiao Li, and Yanpeng Zhang, “Parametric Amplification and Cascaded-Nonlinearity Processes in Common Atomic System”, Scientific Reports 3, 1885 (2013).

[4]      Huaibin Zheng, Xun Zhang, Changbiao Li, Huayan Lan, Junling Che, Ying Zhang and Yanpeng Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor”, J. Chem. Phys. 138, 204315(2013).

[5]      Haixia Chen, Yiqi Zhang, Xin Yao, Zhenkun Wu, Xun Zhang, Yanpeng Zhang and Min Xiao, Scientific Reports 4, 3169 (2014).

[6]      Zhiguo Wang, Peng Ying, Peiying Li, Dan Zhang, Heqing Huang, Hao Tian and Yanpeng Zhang, Scientific Reports 3, 3417 (2013)

[7]      Jiamin Yuan, Weikang Feng, Peiying Li, Xun Zhang, Yiqi Zhang, Huaibin Zheng, and Yanpeng Zhang, "Controllable vacuum Rabi splitting and optical bistability of multi-wave mixing signal inside a ring cavity", Phys. Rev. A 86, 063820 (2012).

[8]      H. B. Zheng, U. Khadka, J. P. Song, Y. P. Zhang, and M. Xiao, "Three-field noise correlation via third-order nonlinear optical processes", Opt. Lett. 35, 3420 (2010).

[9]      J. M. Wen, S. W. Du, Y. P. Zhang, M. Xiao and M. H. Rubin, "Nonclassical light generation via a four-level inverted-Y system", Phys. Rev. A 77, 033816 (2008).

[10]  Gaoping Huang, Jia Sun, Weikang Feng, Jiamin Yuan, Zhenkun Wu, Jianan He, Yiqi Zhang, Yanpeng Zhang, “Observations of Autler-Townes Spatial Splitting of Four-wave Mixing Image”, Appl. Phys. B 112, 267(2013).

[11]  Zhiguo Wang, Peiying Li, Zhaoyang Zhang, Chengjun Lei, Furong Lei, Haixia Chen, and Yanpeng Zhang, “Comparison of Ultranarrow Fluorescence and Four-Wave Mixing in Electromagnetically Induced Transparency Windows”, IEEE Photonics J. 5, 2600311 (2013).

[12]  Huayan Lan, Jia Sun, Zhenkun Wu, Dan Zhang, Yiqi Zhang, Huaibin Zheng, Yanpeng Zhang, “Spatial four wave mixing, probe images and fluorescence signals in dressed three-level system”, J. Phys. Soc. Jpn. 82, 104401 (2013).

[13]  Jia Sun, Zhenkun Wu, Yiqi Zhang, Taikun Liu, Cheng Li, Chengjun Lei, Shuli Huo, and Yanpeng Zhang, “Comparison of Dressed Fluorescence and Four-wave Mixing in Multi-level Systems”, J. Opt. Soc. Am. B 30, 1885 (2013).

[14]  Zhaoyang Zhang, Yunzhe Zhang, Feng Wen, Haixia Chen, Weikang Feng, Huaibin Zheng, and Yanpeng Zhang, “Controllable nonlinear optical processes in six-wave mixing and fluorescence channels”, J. Phys. B 47 (2014).

[15]  Xin Yao, Haixia Chen, Zhenkun Wu, Feng Wen, Dan Zhang, Xin He, and Yanpeng Zhang, “Vacuum Induced Enhancement and Suppression of Six-Wave Mixing in a Ring Cavity”, Laser Phys. Lett. 11, 045401 (2014)

 

                                 (a) 环形腔多波混频实验光路图,能级图(b1b2)和空间相位相配过程(b3)


 


(h) 原子晶格态调控的量子和类量子效应、微腔光子学、超材料微纳光学
课题组在固态原子相干、拓扑光子学等方面有很好的研究基础。在该领域,发表学术论文300余篇,其中在顶级期刊Phys. Rev. Lett.8篇、Laser Photonics Rev.2篇。撰写专著4(SpringerWiley和科学出版社出版)。研究团队入选陕西省重点科技创新团队。获教育部自然科学奖一等奖1项,陕西省科学技术一等奖2项,省部级二等奖3项。在相干多波混频量子调控方面取得了一系列进展[Phys. Rev. Lett. 99, 123603 (2007); Phys. Rev. Lett. 102, 013601 (2009); Phys. Rev. Lett. 106, 093904 (2011)],解决了非线性在原子系综中不可被优化的科学问题,使得原子系综中的五阶非线性高出三阶两个数量级。在掺杂稀土晶体中利用高增益的参量放大光束,获得了压缩度为4 dB的纠缠源;首次提出了原子系综光子拓扑绝缘体[Laser Photonics Rev. 9, 331 (2015)]和分数薛定谔宇称-时间对称[Phys. Rev. Lett. 115, 180403 (2015); Laser Photonics Rev. 10, 526(2016)Phys. Rev. Lett. 117, 12301 (2016)]
 
         
 分数薛定谔方程对啁啾高斯光束在位置空间和波矢空间传播的调控         原子系综光拓扑绝缘体实现方案。

 
 
(i) 外腔式半导体激光器的研制
 

目前,我们还开发外腔式半导体激光器的主振模块,功率放大模块,和激光锁频模块及其配套电源

            外腔式半导体激光器系统;                             锁相放大器电路;                                  半导体激光放大器系统