著作章节

1. “Epitaxial Multiferroic Heterostructures”, in Composite Magnetoelectrics: Materials, Structures, and Applications, edited by G. Srinivasan, S. Priya, and N. Sun, published by Elsevier (2015).

2. “Toward Multiferroic Memories”, in Integrated Multiferroic Heterostructures and Applications, edited by M. Liu, and Z. Zhou, published by Wiley (2019).

代表性论文

[1] Du, Y., Qiao, J., Wu, J., Xu, Y., Nan, T., Dong, S., Hu, Z., Liu, M., Performance analysis of acoustically actuated magnetoelectric antennas via equivalent circuit method, Journal of Applied Physics, 135, 11 (2024).  

[2] Yang, G., Dong, G., Zhang, B., Xu, X., Zhao, Y., Hu, Z., Liu, M., Twisted Integration of Complex Oxide Magnetoelectric Heterostructures via Water-Etching and Transfer Process, Nano-Micro Letters, 16, 1, 19 (2024).  

[3] Sun, X., Wu, J., Gao, J., Wang, G., Liang, X., Li, F., Lin, B., Du, Y., Xu, Y., Huang, H., Hu Z., Guo, J., Liu, M., High SNR magnetoelectric sensor with dual working modes for wideband magnetic field detection, Sensors and Actuators A: Physical, 365, 114904 (2024)

[4] Wu, J., Du, Y., Xu, Y., Qiao, J., Qu, Y., Wang, Z., Dong, S., Hu, Z., Liu, M., Self-biased magnetoelectric sensor operating in d 36 face-shear mode, IEEE Sensors Journal, 23,19, 22366-22372 (2023). 

[5] Liu J.#, Guan M.#, Xu Y., Zhao S., Su W., Zhang C., Wang Z., Zhang X., Hu Z.*, Jiang Z., Liu M., Enhanced Limit-of-Detection of Current Sensor Based on Tunneling Magnetoresistive Effect with Multi-chips Differential Design, IEEE Transactions on Instrumentation and Measurementhttps://doi.org/10.1109/TIM.2023.3322494 (2023).

[6] Du, Y., Xu, Y., Wu, J.*, Qiao, J., Wang, Z., Hu, Z.*, Jiang, Z., & Liu, M*. Very-low-frequency magnetoelectric antennas for portable underwater communication: Theory and experiment. IEEE Transactions on Antennas and Propagation, 71(3), 2167–2181. https://doi.org/10.1109/tap.2022.3233665 (2023).

[7]  Sun, X., Wu, J.*, Liang, X., Du, Y., Xu, Y., Qu, Y., Guan, M., Huang, H., Li, F., Liu, S., Ju, D., Wang, Z., Hu, Z.*, Guo, J., & Liu, M. Effects of amplitude and frequency of the modulation field on the sensitivity for low-frequency magnetic field in magnetoelectric sensors. IEEE Sensors Journal, 23(12), 12695–12701. https://doi.org/10.1109/jsen.2023.3268741 (2023).

[8]  Ou, Z., Peng, B., Chu, W., Li, Z., Wang, C., Zeng, Y., Chen, H., Wang, Q., Dong, G., Wu, Y., Qiu, R., Ma, L., Zhang, L., Liu, X., Li, T., Yu, T., Hu, Z.*, Wang, T.*, Liu, M., & Xu, H.* Strong electron‐phonon coupling mediates carrier transport in BiFeO3. Advanced Science, 10(22). https://doi.org/10.1002/advs.202301057 (2023).

[9]  Su, W.#, Hu, Z.#, Li, Y.#, Han, Y., Chen, Y., Wang, C., Jiang, Z., He, Z., Wu, J., Zhou, Z., Wang, Z.*, & Liu, M.* Easy‐cone magnetic state induced ultrahigh sensitivity and low driving current in spin‐orbit coupling 3D magnetic sensors. Advanced Functional Materials, 33(10). https://doi.org/10.1002/adfm.202211752 (2022).

[10]  Wang, L., Wu, J.*, Liu, J., Mao, R., Guan, M., Xian, D., Mao, Q., Wang, C., Wang, Z., Jiang, Z., Hu, Z.*, & Liu, M. A magnetic field imaging system based on TMR sensors for banknote recognition. IEEE Transactions on Instrumentation and Measurement, 71, 1–9. https://doi.org/10.1109/tim.2022.3170987 (2022).

[11]  Zhao, X., Hu, Z.*, Fang, T., Cheng, Y., Shi, K., Weng, Y.-X., Du, Y., Wu, J., Guan, M., Wang, Z., Zhou, Z., Liu, M.*, & Pan, J.-Y.*  Vector imaging of electric field-induced reversible magnetization reversal in exchange-biased multiferroic heterostructures. Science China Materials, 65(1), 186–192. https://doi.org/10.1007/s40843-021-1710-3 (2021).

[12]  Wu, J., Hu, Z.*, Gao, X., Cheng, M., Zhao, X., Su, W., Wang, L., Guan, M., Du, Y., Mao, R., Wang, Z., Zhou, Z., Dong, S., & Liu, M.*  Unconventional piezoelectric coefficients in perovskite piezoelectric ceramics. Journal of Materiomics, 7(2), 254–263. https://doi.org/10.1016/j.jmat.2020.10.004 (2021).

[13]  Zhao, X., Hu, Z.*, Wu, J., Fang, T., Li, Y., Cheng, Y., Zhao, Y., Guan, M., Xian, D., Wang, C., Mao, Q., Peng, B., Peng, R.-C., Zhou, Z., Wang, Z., Jiang, Z.-D., & Liu, M.* Vector analysis of electric-field-induced antiparallel magnetic domain evolution in ferromagnetic/ferroelectric heterostructures. Journal of Advanced Ceramics, 10(6), 1273–1281. https://doi.org/10.1007/s40145-021-0502-1 (2021).

[14]  Wang, L., Hu, Z.*, Wu, J., Zhao, X., Guan, M., Wang, C., Luo, N., Xian, D., Wang, Z., Zhou, Z., Jiang, Z., & Liu, M.* Enhancing the linearity of giant magnetoresistance sensors by magnetic anisotropic design and low temperature annealing. IEEE Sensors Journal, 21(24), 27393–27399. https://doi.org/10.1109/jsen.2021.3125037 (2021).

[15]  Wu, J., Hu, Z.*, Gao, X., Cheng, M., Zhao, X., Su, W., Wang, Z., Zhou, Z., Dong, S., & Liu, M.* A magnetoelectric compass for in-plane AC magnetic field detection. IEEE Transactions on Industrial Electronics, 68(4), 3527–3536. https://doi.org/10.1109/tie.2020.2978711 (2021).

[16]  Wu, J., Hu, Z.*, Cheng, M., Zhao, X., Guan, M., Su, W., Xian, D., Wang, C., Wang, Z., Peng, B., Peng, R.-C., Zhou, Z., Dong, S., Jiang, Z.-D., & Liu, M.* Highly sensitive magneto-mechano-electric magnetic field sensor based on torque effect. IEEE Sensors Journal, 21(2), 1409–1416. https://doi.org/10.1109/jsen.2020.3016130 (2021).

获授权发明专利

授权专利名称 申请号 年份
一种基于甚低频磁电天线的水下通信系统及制造方法 ZL202111223332.2 2022
一种自支撑的三维自组装磁电复合薄膜结构及其制备方法 ZL202010275255.4 2022
一种柔性磁电异质结及其制备方法 ZL201911358469.1 2022
一种自支撑的磁电纳米复合结构及其制备方法 ZL202010198089.2 2022
一种悬臂梁式MEMS磁传感器及其制备方法 ZL202010323013.8 2022
一种基于磁扭电效应的磁场传感器及其制造方法 ZL201910920177.6 2021
一种磁电弹簧结构及其制备方法 ZL202010113164.0 2021
一种基于逆磁电效应的超低频磁电天线及制备方法 ZL202010247194.0 2021
一种采用压电剪切模式实现磁畴翻转的方法 ZL202010246936.8 2021
一种双夹持纵振模式磁电天线及其制备方法 ZL202010246941.9 2021
一种阻抗敏感型磁传感器及其硬件检测电路 ZL202010275259.2 2021
一种基于声表面波和磁扭矩效应的磁传感器及制备方法 ZL202010198086.9 2021
一种测量面内交流磁场的磁电罗盘及其制造方法 ZL201910919389.2 2020
一种柔性微波器件及其制备方法 ZL201910477178.8 2020
一种实现可见光调控界面磁性的自旋电子器件及制备方法 ZL201811594047.X 2020