Dr. Jun Liu

              
    

       E-mail: liukeen(at)xjtu.edu.cn

 

Honors and Awards

  • 2024, COMAC Outstanding Scientist
  • 2022, Excellent Student Paper Award (APWeb-WAIM 2022)
  • 2021, Best Resource Paper Award (CCKS 2021)
  • 2019, Wang Kuancheng Education Award
  • 2018, Best Paper Award (NASAC 2018)
  • 2018, Best Paper Award (ICBK 2018)
  • 2018, Best Student Paper Award Candidate (ISWC 2018)
  • 2016, Best Paper Award (The 27th ISSRE)
  • 2014, IEEE Outstanding Service Award (The 14th IEEE CIT)
  • 2013, Google Faculty Award
  • 2010, IBM-CHINA Outstanding Teacher Award
  • 2010, Young Scientist Award of ShaanXi Province
  • 2009, National Second-class Award for Teaching
  • 2008, New Century Excellent Talent of the Education Ministry of China
  • 2006, Second Class Award for National Progress in Science and Technology
  • 2004, Second Class Award of Progress in Science and Technology of the Education Ministry of China
  • 2004, First Class Award of Progress in Science and Technology of Shanghai City
  • 2003, First Class Award of Progress in Science and Technology of Shaanxi Province
  • 2003, “Hu’s” Scholarship in XJTU

Positions

Professor
Department of Computer Science
School of Electronic and Information Engineering
Xi’an Jiaotong University (XJTU), Xi’an 710049, China

Director of Xi'an Jiaotong University - Lenovo Smart Industries Joint Lab (2022~);
Director of Institute of Multimedia Knowledge Fusion and Engineering (2020~);

Former Director of Shaanxi Province Key Lab of  Big Data Knowledge Engineering (2012~2023).

Associate Editor: IEEE TNNLS (2020 ~); Area  Editor: Information Fusion (2024 ~); 

Guest Editor: World Wide Web Journal, Information Fusion, ACM TOMM, IEEE Systems Journal, Future Generation Computer Systems     
IEEE Senior Member, CCF Senior Member

Education and Work Experiences

  • 12/2011–Present   Professor, Department of Computer Science and Technology, XJTU, China
  • 7/2019–8/2019     Senior Visiting Fellow, Karlsruhe Institute of Technology (KIT), Germany
  • 8/2017–9/2017     Senior Visiting Fellow, Stanford University, USA
  • 7/2016–8/2016     Senior Visiting Fellow, Queensland University, Australia
  • 7/2011–8/2011     Visiting Scholar, Iowa State University, USA
  • 7/1998–12/2011   Lecturer, Assoc. Prof., Department of Computer Science, XJTU, China
  • 5/2005–8/2005     Visiting Scholar, University of Hong Kong, Hong Kong, China
  • 9/1999–3/2004     Ph.D., Systems Engineering, XJTU, China
  • 9/1995–7/1998     M.Eng., Computer Architecture, XJTU, China 
  • 9/1991–7/1995     B.Eng., Computer Science and Technology, Xi’an Jiaotong University (XJTU), China

Research Projects

  • 1/2023–12/2027   Deep understanding of diagrams through the integration of visual perception laws and inherent mechanisms, funded by the National Natural Science Foundation of China (62450005)
  • 1/2023–12/2027   Cross-media teaching resources understanding and personalized navigation learning, funded by the National Natural Science Foundation of China (62293553)
  • 1/2023–12/2023   Visual Perception Principles induced Diagram understanding, funded by the National Natural Science Foundation of China (62250066)
  • 1/2022–12/2025   Representation Learning and Differentiable Reasoning of First-order Logic Formulas, funded by the National Natural Science Foundation of China (62176207)
  • 1/2020–10/2020   Intelligent Tutoring Systems based on Knowledge Forest, funded by Lenovo Research
  • 5/2018–4/2021     Educational Data Analysis and Mining, funded by the National Key Research and Development Program of China (2018YFB1004500)
  • 1/2017–12/2020   Faceted Fusion of Knowledge Fragments from Open Knowledge Sources, funded by the National Natural Science Foundation of China (61672419)
  • 1/2016–12/2020   Massive Online Collaborative Learning, funded by the National Natural Science Foundation of China (61532004)
  • 1/2012–12/2014   Content Management and Analysis of Massive Web Data, funded by the Hi-Tech R&D (National 863) Project of China (2012AA011003)
  • 7/2008–7/2010     Knowledge Discovery and Value-added Service in the field of Education, funded by the Hi-Tech R&D (National 863) Project of China (2008AA01Z131)
  • 1/2009–12/2011   Mining Knowledge Elements and their Association from Domain-specific Text, funded by the National Natural Science Foundation of China (60803079)
  • 1/2012–12/2015   Topology and evolution characteristics of knowledge map, funded by the National Natural Science Foundation of China (61173112)


Research Interests: NLP, CV, e-learning

Selected Publications

2026

Conference Papers

  • Jian Zhang, Zhangqi Wang, Haiping Zhu, Kangda Cheng, Kai He, Bo Li, Qika Lin, Jun Liu, Erik Cambria. MARS: Multi-Agent Adaptive Reasoning with Socratic Guidance for Automated Prompt Optimization. AAAI 2026.
  • Jian Zhang, Zhiyuan Wang, Zhangqi Wang, Fangzhi Xu, Qika Lin, Lingling Zhang, Rui Mao, Erik Cambria, Jun Liu. MAPS: Multi-Agent Personality Shaping for Collaborative Reasoning. AAAI 2026.

2025

Journal Papers

  • Yaxian Wang, Bifan Wei, Yinghong Ma, Xudong Jiang, Henghui Ding, Zhongmin Cai, Jun Liu. Reasoning step by step via a neural-symbolic geometry problem solver. Pattern Recognition, 2026, 171, 112261.
  • Xiaoguang Wang, Chenxu Wang, Mengqin Wang, Jun Liu, Xiaohong Guan. B2BGAN: A Backbone-to-Branches GAN-based Oversampling Approach for Class-Imbalanced Tabular Datad. IEEE TKDE, Accepted.
  • Bo Li, Lingling Zhang, Tingting Bao, Yunkuo Lei, Xiaoqing Zhang, Jun Liu. When Multi-focus Image Fusion Meets Nonlinear Spiking Neural P Systems. IEEE TMM, Accepted.
  • Yaxian Wang, Bifan Wei, Yinghong Ma, Lingling Zhang, Xudong Jiang, Henghui Ding, Jun Liu. GeoTree: A Dynamic Tree-based Geometry Problem Solver through LLM-Symbolic Reasoning. IEEE TMM, Accepted.
  • Wenjun Wu, Lingling Zhang, Jun Liu, Ming Ren, Xin Hu, Jiaxin Wang, Qianying Wang. Hierarchy-Based Diagram-Sentence Matching on Dual-Modal Graphs. Pattern Recognition, Accepted.
  • Haochen Han, Minnan Luo, Huan Liu, Fang Nan, Jun Liu. A Unified Optimal Transport Framework for Cross-Modal Retrieval with Noisy Labels. IEEE TNNLS, Accepted.
  • Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu, Erik Cambria. Are Large Language Models Really Good Logical Reasoners? A Comprehensive Evaluation and Beyond. IEEE TKDE, Accepted.
  • Qinghua Zheng, Huan Liu, Xiaoqing Zhang, Caixia Yan, Xiangyong Cao, Tieliang Gong, Yong-Jin Liu, Bin Shi, Zhen Peng, Xiaocen Fan, Ying Cai, Jun Liu. Machine Memory Intelligence: Inspired by Human Memory Mechanisms. Engineering, Accepted.
  • Lingling Zhang, Wenjun Wu, Jun Liu, Xiaojun Chang, Xin Hu, Xuan Luo, Yaqiang Wu, Qinghua Zheng. LFSRM: Few-Shot Diagram-Sentence Matching via Local-Feedback Self-Regulating Memory. IEEE TPAMI, Accepted.

Conference Papers

  • Xinyu Zhang, Yuxuan Dong, Lingling Zhang, Chengyou Jia, Zhuohang Dang, Basura Fernando, Jun Liu, Mike Zheng Shou. CoFFT: Chain of Foresight-Focus Thought for Visual Language Models. NeurIPS 2025.
  • Muye Huang, Lingling Zhang, Jie Ma, Han Lai, Fangzhi Xu, Yifei Li, Wenjun Wu, Yaqiang Wu, Jun Liu. ChartSketcher: Reasoning with Multimodal Feedback and Reflection for Chart Understanding. NeurIPS 2025.
  • Jie Ma, Ning Qu, Zhitao Gao, Xing Rui, Jun Liu, Hongbin Pei, Jiang Xie, Lingyun Song, Pinghui Wang, Jing Tao, Su Zhou. Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs. NeurIPS 2025.
  • Wenjun Wu, Lingling Zhang, Bo Zhao, Muye Huang, QianYing Wang, Jun Liu. Causal-R: A Causal-Reasoning Geometry Problem Solver for Optimized Solution Exploration. NeurIPS 2025.
  • Xinyu Zhang, Lingling Zhang, Yanrui Wu, Muye Huang, Wenjun Wu, Bo Li, Shaowei Wang, Basura Fernando, Jun Liu. Diagram-driven course questions generation. EMNLP 2025.
  • Xinyu Zhang, Lingling Zhang, Yanrui Wu, Muye Huang, Jun Liu. Cognitive Predictive Coding Network: Rethinking the Generalization in Raven's Progressive Matrices. ACM MM 2025.
  • Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu, Yu Qiao, Zhiyong Wu. Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models. ACL 2025.
  • Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Qiushi Sun, Kanzhi Cheng, Junxian He, Jun Liu, Zhiyong Wu. Genius: A Generalizable and Purely Unsupervised Self-Training Framework For Advanced Reasoning. ACL 2025.
  • Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Jun Liu, Qika Lin, Zhiyong Wu. φ-Decoding: Adaptive Foresight Sampling for Balanced Inference-Time Exploration and Exploitation. ACL 2025.
  • Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang, Chengyou Jia, Basura Fernando, Mike Zheng Shou, Lingling Zhang, Jun Liu. PhysReason: A Comprehensive Benchmark towards Physics-Based Reasoning. ACL 2025.
  • Yifei Li, Lingling Zhang, Hang Yan, Tianzhe Zhao, Zihan Ma, Muye Huang, Jun Liu. SAGE: Scale-Aware Gradual Evolution for Continual Knowledge Graph Embedding. KDD 2025.
  • Lingyun Song, Xiaofan Sun, Xinbiao Gan, Yudai Pan, Xiaolin Han, Jie Ma, Jun Liu, Xuequn Shang. Metapath and Hypergraph Structure-based Multi-Channel Graph Contrastive Learning for Student Performance Prediction. IJCAI 2025.
  • Yaxian Wang, Bifan Wei, Jun Liu, Lingling Zhang, Shuting He, Jun Li, Qika Lin. GlFoMR: A Glance-then-Focus Multimodal Reasoning Framework for Diagram Question Answering. SIGIR 2025.
  • Tianzhe Zhao, Jiaoyan Chen, Yanchi Ru, Qika Lin, Yuxia Geng, Haiping Zhu, Yudai Pan, Jun Liu. Rethinking Continual Knowledge Graph Embedding: Benchmarks and Analysis. SIGIR 2025.
  • Zeao Tu, Xiangdi Meng, Yu He, Zihan Yao, Tianyu Qi, Jun Liu, Ming Li. ResoFilter: Fine-grained Synthetic Data Filtering for Large Language Models through Data-Parameter Resonance Analysis. NAACL 2025.
  • Yudai Pan, Jiajie Hong, Tianzhe Zhao, Lingyun Song, Jun Liu, Xuequn Shang. Logic-Aware Knowledge Graph Reasoning for Structural Sparsity under Large Language Model Supervision. WWW 2025.
  • Jie Ma, Zhitao Gao, Qi Chai, Wangchun Sun, Pinghui Wang, Hongbin Pei, Jing Tao, Lingyun Song, Jun Liu, Chen Zhang, Lizhen Cui. Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models. AAAI 2025.
  • Muye Huang, Han Lai, Xinyu Zhang, Wenjun Wu, Jie Ma, Lingling Zhang, Jun Liu. EvoChart: A Benchmark and a Self-Training Approach Towards Real-World Chart Understanding. AAAI 2025.
  • Muye Huang, Lingling Zhang, Han Lai, Wenjun Wu, Xinyu Zhang, Jun Liu. VProChart: Answering Chart Question through Visual Perception Alignment Agent and Programmatic Solution Reasoning. AAAI 2025.
  • Yaxian Wang, Henghui Ding, Shuting He, Xudong Jiang, Bifan Wei, Jun Liu. Hierarchical Alignment-enhanced Adaptive Grounding Network for Generalized Referring Expression Comprehension. AAAI 2025.

2024

Journal Papers

  • Lingling Zhang, Yujie Zhong, Qinghua Zheng, Jun Liu, Qianying Wang, Jiaxin Wang, Xiaojun Chang. TDGI: Translation-Guided Double-Graph Inference for Document-Level Relation Extraction. IEEE TPAMI, 2024, Accepted.
  • Shaowei Wang, Lingling Zhang, Wenjun Wu, Tao Qin, Xinyu Zhang, Jun Liu. Alignment-guided Self-supervised Learning for Diagram Question Answering. IEEE TMM, 2024, Accepted.
  • Bo Li, Lingling Zhang, Jun Liu, Hong Peng. Multi-focus Image Fusion with Parameter Adaptive Dual Channel Dynamic Threshold Neural P Systems. Neural Networks, 2024, Accepted.
  • Song Lingyun, Shang Xuequn, Zhou Ruizhi, Liu Jun, Ma Jie, Li Zhanhuai, Sun Mingxuan. A Multi-Group Multi-Stream Attribute Attention Network for Fine-Grained Zero-Shot Learning. Neural Networks, 2024, Accepted.
  • Lingling Zhang, Yifei Li, Qianying Wang, Yun Wang, Hang Yan, Jiaxin Wang, Jun Liu. FPrompt-PLM: Flexible-Prompt on Pretrained Language Model for Continual Few-Shot Relation Extraction. IEEE TKDE, 2024, Accepted.
  • Hongwei Zeng, Bifan Wei, Jun Liu. RTRL: Relation-aware Transformer with Reinforcement Learning for Deep Question Generation. Knowledge-Based Systems, 2024, Accepted.
  • Mengyue Liu, Jun Liu, Yixiang Dong, Rui Mao, Erik Cambria. Interest-Driven Community Detection on Attributed Heterogeneous Information Networks. Information Fusion, 2024, Accepted.
  • Xinyu Zhang, Lingling Zhang, Xin Hu, Jun Liu, Shaowei Wang, Qianying Wang. Alignment Relation is What You Need for Diagram Parsing. IEEE TIP, 2024, Accepted.
  • Jie Ma, Pinghui Wang, Dechen Kong, Zewei Wang, Jun Liu, Hongbin Pei, Junzhou Zhao. Robust Visual Question Answering: Datasets, Methods, and Future Challenges. IEEE TPAMI, 2024, Accepted.
  • Yudai Pan, Jun Liu, Tianzhe Zhao, Lingling Zhang, Qianying Wang. Context-Aware Commonsense Knowledge Graph Reasoning with Path-Guided Explanations. IEEE TKDE, 2024, Accepted.
  • Bin Shang, Yinliang Zhao, Jun Liu. Knowledge Graph Representation Learning with Relation-guided Aggregation and Interaction. Information Processing & Management, 2024, 61(4), 103752.
  • Shaowei Wang, Lingling Zhang, Tao Qin, Jun Liu, Yifei Li, Qianying Wang, Qinghua Zheng. Multi-View Cognition with Path Search for One-Shot Part Labeling. Computer Vision and Image Understanding (CVIU), 2024, Accepted.
  • Dailusi Ma, Haiping Zhu, Siji Liao, Yan Chen, Jun Liu, Feng Tian, Ping Chen. Learning Path Recommendation with Multi-behavior User Modeling and Cascading Deep Q Networks. Knowledge-Based Systems, 2024, 294, 11743.
  • Bin Shang, Yinliang Zhao, Jun Liu. Learnable Convolutional Attention Network for Knowledge Graph Completion. Knowledge-Based Systems, 2024, Accepted.

Conference Papers

  • Jie Ma, Min Hu, Pinghui Wang, Wangchun Sun, Lingyun Song, Hongbin Pei, Jun Liu, Youtian Du. Look, Listen, and Answer: Overcoming Biases for Audio-Visual Question Answering. NeurIPS, 2024.
  • Weiping Fu, Bifan Wei, Jianxiang Hu, Zhongmin Kai, Jun Liu. QGEval: Benchmarking Multi-dimensional Evaluation for Question Generation. EMNLP 2024.
  • Jiaxin Wang, Lingling Zhang, Wee Sun Lee, Yujie Zhong, Liwei Kang, Jun Liu. When Phrases Meet Probabilities: Enabling Open Relation Extraction with Cooperating Large Language Models. ACL 2024.
  • Fangzhi Xu, Qika Lin, Tianzhe Zhao, Jiawei Han, Jun Liu. PathReasoner: Modeling Reasoning Path with Equivalent Extension for Logical Question Answering. ACL 2024.
  • Fangzhi Xu, Zhiyong Wu, Qiushi Sun, Siyu Ren, Fei Yuan, Shuai Yuan, Qika Lin, Yu Qiao, Jun Liu. Symbol-LLM: Towards Foundational Symbol-centric Interface For Large Language Models. ACL 2024.
  • Tianzhe Zhao, Jiaoyan Chen, Yanchi Ru, Qika Lin, Yuxia Geng, Jun Liu. Untargeted Adversarial Attack on Knowledge Graph Embeddings. SIGIR 2024.
  • Wenjun Wu, Lingling Zhang, Jun Liu, Xi Tang, Yaxian Wang, Shaowei Wang, Qianying Wang. E-GPS: Explainable Geometry Problem Solving via Top-Down Solver and Bottom-Up Generator. CVPR 2024.
  • Shaowei Wang, Lingling Zhang, Longji Zhu, Tao Qin, Kim-Hui Yap, Xinyu Zhang, Jun Liu. CoG-DQA: Chain-of-Guiding Learning with Large Language Models for Diagram Question Answering. CVPR 2024.
  • Jian Zhang, Changlin Yang, Haiping Zhu, Qika Lin, Fangzhi Xu, Jun Liu. A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction. COLING 2024.
  • Yudai Pan, Jun Liu, Tianzhe Zhao, Lingling Zhang, Yun Lin, Jinsong Dong. A Symbolic Rule Integration Framework with Logic Transformer for Inductive Relation Prediction. WWW 2024.
  • Bin Shang, Yinliang Zhao, Jun Liu, Di Wang. Mixed Geometry Message and Trainable Convolutional Attention Network for Knowledge Graph Completion. AAAI 2024.
  • Bin Shang, Yinliang Zhao, Jun Liu, Di Wang. LAFA: Multimodal Knowledge Graph Completion with Link Aware Fusion and Aggregation. AAAI 2024.

2023

Journal Papers

  • Jie Ma, Jun Liu, Qi Chai, Pinghui Wang, Jing Tao. Diagram Perception Networks for Textbook Question Answering via Joint Optimization. IJCV, 2023, Accepted.
  • Fangzhi Xu, Jun Liu, Qika Lin, Tianzhe Zhao, Jian Zhang, Lingling Zhang. Mind Reasoning Manners: Enhancing Type Perception for Generalized Zero-shot Logical Reasoning over Text. IEEE TNNLS, 2023, Accepted.
  • Changyu Wang, Pinghui Wang, Tao Qin, Chenxu Wang, Suhansanu Kumar, Xiaohong Guan, Jun Liu, Kevin Chen-Chuan Chang. SocialSift: Target Query Discovery on Online Social Media With Deep Reinforcement Learning. IEEE TNNLS, 2023.
  • Yaxian Wang, Bifan Wei, Jun Liu, Lingling Zhang, Jiaxin Wang, Qianying Wang. DisAVR: Disentangled Adaptive Visual Reasoning Network for Diagram Question Answering. IEEE TIP, 2023, Accepted.
  • Jie Ma, Qi Chai, Jun Liu, Qingyu Yin, Pinghui Wang, Qinghua Zheng. XTQA: Span-Level Explanations for Textbook Question Answering. IEEE TNNLS, 2023, Accepted.
  • Yudai Pan, Jun Liu, Lingling Zhang, Yi Huang. Incorporating Logic Rules with Textual Representations for Interpretable Knowledge Graph Reasoning. Knowledge-Based Systems, 2023, Accepted.
  • Fangzhi Xu, Qika Lin, Jun Liu, Lingling Zhang, Tianzhe Zhao, Qi Chai, Yudai Pan, Yi Huang, Qianying Wang. MoCA: Incorporating Domain Pretraining and Cross Attention for Textbook Question Answering. Pattern Recognition, 2023(140): 109588.
  • Yaxian Wang, Jun Liu, Ma Jie, Hongwei Zeng, Lingling Zhang, Junjun Li. Dynamic Dual Graph Networks for Textbook Question Answering. Pattern Recognition, 2023, Accepted.
  • Lingling Zhang, Xinyu Zhang, Qianying Wang, Wenjun Wu, Xiaojun Chang, Jun Liu. RPMG-FSS: Robust Prior Mask Guided Few-Shot Semantic Segmentation. IEEE TCSVT, 2023, Accepted.
  • 郑庆华, 刘欢, 龚铁梁, 张玲玲, 刘均. 大数据知识工程发展现状与未来展望. 中国工程科学, 2023, 已录用.
  • Bin Shang, Yinliang Zhao, Jun Liu, Yifan Liu, Chenxin Wang. A Contrastive Knowledge Graph Completion Model with Hierarchical Attention and Dynamic Completion. Neural Computing and Applications, 2023, Accepted.
  • Lingyun Song, Mengting He, Xuequn Shang, Chen Yang, Jun Liu, Mengzhen Yu, Yu Lu. A Deep Cross-modal Neural Cognitive Diagnosis Framework for Modeling Student Performance. Expert Systems With Applications, 2023, Accepted.

Conference Papers

  • Yuecheng Rong, Juntao Yao, Jun Liu, Yifan Fang, Wei Luo, Hao Liu, Jie Ma, Zepeng Dan, Jinzhu Lin, Zhi Wu, Yan Zhang, Chuanming Zhang. GBTTE: Graph Attention Network Based Bus Travel Time Estimation. CIKM 2023.
  • Mengyue Liu, Yun Lin, Jun Liu, Bohao Liu, Qinghua Zheng, Jin Song Dong. B2-Sampling: Fusing Balanced and Biased Sampling for Graph Contrastive Learning. KDD 2023.
  • Bin Shang, Yinliang Zhao, Di Wang, Jun Liu. Relation-Aware Multi-Positive Contrastive Knowledge Graph Completion with Embedding Dimension Scaling. SIGIR 2023.
  • Xin Hu, Lingling Zhang, Jun Liu, Jinfu Fan, Yang You, Yaqiang Wu. GPTR: Gestalt-Perception Transformer for Diagram Object Detection. AAAI 2023.
  • Xin Hu, Lingling Zhang, Jun Liu, Yang You, Yaqiang Wu. Diagram Visual Grounding: Learning to See with Gestalt-Perceptual Attention. IJCAI 2023.
  • Hongwei Zeng, Jun Liu, Bifan Wei, Weiping Fu. Synthesize, Prompt and Transfer: Zero-shot Conversational Question Generation with Pre-trained Language Model. ACL 2023.
  • Qika Lin, Jun Liu, Rui Mao, Fangzhi Xu, Erik Cambria. TECHS: Temporal Logical Graph Networks for Explainable Extrapolation Reasoning. ACL 2023.

2022

Journal Papers

  • Yaxian Wang, Bifan Wei, Jun Liu, Qika Lin, Lingling Zhang, Yaqiang Wu. Spatial-Semantic Collaborative Graph Network for Textbook Question Answering. IEEE TCSVT, 2022, Accepted.
  • Jiaxin Wang, Lingling Zhang, Jun Liu, Kunming Ma, Wenjun Wu, Xiang Zhao, Yaqiang Wu, Yi Huang. TGIN: Translation-Based Graph Inference Network for Few-Shot Relational Triplet Extraction. IEEE TNNLS, 2022, Accepted.
  • Qika Lin, Rui Mao, Jun Liu, Fangzhi Xu, Erik Cambria. Fusing Topology Contexts and Logical Rules in Language Models for Knowledge Graph Completion. Information Fusion, 2022, Accepted.
  • Yuecheng Rong, Zhimian Xu, Jun Liu, Hao Liu, Jian Ding, Xuanyu Liu, Wei Luo, Chuanming Zhang, Jiaxiang Gao. Du-Bus: A Realtime Bus Waiting Time Estimation System Based On Multi-source Data. IEEE TITS, 2022, Accepted.
  • Song Lingyun, Li Jiaoao, Liu Jun, Yang Yang, Shang Xuequn, Sun Mingxuan. Answering Knowledge-based Visual Questions via the Exploration of Question Purpose. Pattern Recognition, 2022, Accepted.
  • Lingling Zhang, Xiaojun Chang, Jun Liu, Minnan Luo, Zhihui Li, Lina Yao, Alex Hauptmann. TN-ZSTAD: Transferable Network for Zero-Shot Temporal Activity Detection. IEEE TPAMI, 2022, Accepted.
  • Jie Ma, Qi Chai, Jingyue Huang, Jun Liu, Yang You, Qinghua Zheng. Weakly Supervised Learning for Textbook Question Answering. IEEE TIP, 2022, Accepted.
  • Jianming Zheng, Fei Cai, Jun Liu, Yanxiang Ling, Honghui Chen. Multistructure Contrastive Learning for Event Representation. IEEE TNNLS, 2022, Accepted.
  • Lingling Zhang, Shaowei Wang, Jun Liu, Xiaojun Chang, Qika Lin, Yaqiang Wu, Qinghua Zheng. MuL-GRN: Multi-Level Graph Relation Network for Few-Shot Node Classification. IEEE TKDE, 2022, Accepted.
  • Yanxiang Ling, Fei Cai, Jun Liu, Honghui Chen, Maarten de Rijke. Generating Relevant and Informative Questions for Open-domain Conversations. ACM TOIS, 2022, Accepted.
  • Shaowei Wang, Lingling Zhang, Xuan Luo, Yi Yang, Xin Hu, Tao Qin, Jun Liu. Computer Science Diagram Understanding with Topology Parsing. ACM TKDD, 2022, Accepted.
  • Lingyun Song, Mengzhen Yu, Xuequn Shang, Yu Lu, Jun Liu, Ying Zhang, Zhanhuai Li. A Deep Grouping Fusion Neural Network for Multimedia Content Understanding. IET Image Process, 2022, Accepted.

Conference Papers

  • Yudai Pan, Jun Liu, Lingling Zhang, Tianzhe Zhao, Qika Lin, Xin Hu, Qianying Wang. Inductive Relation Prediction with Logical Reasoning Using Contrastive Representations. EMNLP 2022.
  • Jiaxin Wang, Lingling Zhang, Jun Liu, Liang Xi, Yujie Zhong, Yaqiang Wu. MatchPrompt: Prompt-based Open Relation Extraction with Semantic Consistency Guided Clustering. EMNLP 2022.
  • Yuecheng Rong, Jun Liu, Zhilin Xu, Jian Ding, Chuanming Zhang, Jiaxiang Gao. BusWTE: Realtime Bus Waiting Time Estimation of GPS Missing via Multi-Task Learning. ECML-PKDD 2022.
  • Siyu Yao, Tianzhe Zhao, Fangzhi Xu, Jun Liu. Incorporating Prior Type Information for Few-shot Knowledge Graph Completion. APWeb-WAIM 2022. (Excellent Student Paper Award)
  • Fangzhi Xu, Jun Liu, Qika Lin, Yudai Pan, Lingling Zhang. Logiformer: A Two-Branch Graph Transformer Network for Interpretable Logical Reasoning. SIGIR 2022.
  • Qika Lin, Jun Liu, Fangzhi Xu, Yudai Pan, Yifan Zhu, Lingling Zhang, Tianzhe Zhao. Incorporating Context Graph with Logical Reasoning for Inductive Relation Prediction. SIGIR 2022.

2021

Book/Book Chapter

  • 郑庆华, 刘均, 魏笔凡, 张玲玲. 知识森林:理论、方法与实践. 科学出版社, 2021.
  • Jun Liu, Lingling Zhang, Bifan Wei, Qinghua Zheng. Virtual Teaching Assistants: Technologies, Applications and Challenges. In: Fang Chen, Jianlong Zhou (Eds.), Humanity Driven AI: Productivity, Well-being, Sustainability and Partnership, Springer, 2021.

Journal Papers

  • Qika Lin, Jun Liu, Lingling Zhang, Yudai Pan, Xin Hu, Fangzhi Xu, Hongwei Zeng. Contrastive Graph Representations for Logical Formulas Embedding. IEEE TKDE, 2021, Accepted.
  • 张玲玲, 陈一苇, 吴文俊, 魏笔凡, 罗炫, 常晓军, 刘均. 基于对比约束的可解释小样本学习. 计算机研究与发展, 2021, 58(12): 2573-2584.
  • 蔺奇卡, 张玲玲, 刘均, 赵天哲. 基于问句感知图卷积的教育知识库问答方法. 计算机科学与探索, 2021, 15(10): 1880-1887.
  • Yanxiang Ling, Fei Cai, Jun Liu, Honghui Chen, Maarten de Rijke. Keep and Select: Improving Hierarchical Context Modeling for Multi-turn Response Generation. IEEE TNNLS, 2021, Accepted.
  • Xin Hu, Lingling Zhang, Jun Liu, Qinghua Zheng, Jianlong Zhou. Fs-DSM: Few-Shot Diagram-Sentence Matching via Cross-Modal Attention Graph Model. IEEE TIP, 2021, Accepted.
  • Jie Ma, Jun Liu, Qika Lin, Bei Wu, Yaxian Wang, Yang You. Multi-Task Learning for Visual Question Answering. IEEE TNNLS, 2021, Accepted.
  • Qika Lin, Jun Liu, Yudai Pan, Lingling Zhang, Xin Hu, Jie Ma. Rule-Enhanced Iterative Complementation for Knowledge Graph Reasoning. Information Sciences, 2021, Accepted.
  • Jie Ma, Jun Liu, Yaxian Wang, Junjun Li, Tongliang Liu. Relation-aware Fine-grained Reasoning Network for Textbook Question Answering. IEEE TNNLS, 2021, Accepted.
  • Lingling Zhang, Shaowei Wang, Xiaojun Chang, Jun Liu, Zongyuan Ge, Qinghua Zheng. Auto-FSL: Searching the Attribute Consistent Network for Few-Shot Learning. IEEE TCSVT, 2021, Accepted.
  • Hongwei Zeng, Zhuo Zhi, Jun Liu, Bifan Wei. Improving Paragraph-level Question Generation with Extended Answer Network and Uncertainty-aware Beam Search. Information Sciences, 2021, Accepted.
  • Hongwei Zeng, Jun Liu, Meng Wang, Bifan Wei. A Sequence to Sequence Model for Dialogue Generation with Gated Mixture of Topics. Neurocomputing, 2021, Accepted.
  • Yanxiang Ling, Fei Cai, Xuejun Hu, Jun Liu, Wanyu Chen, Honghui Chen. Context-Controlled Topic-Aware Neural Response Generation for Open-Domain Dialog Systems. Information Processing & Management, 2021, 58(1): 102392.

Conference Papers

  • Shaowei Wang, Lingling Zhang, Yi Yang, Xin Hu, Tao Qin, Bifan Wei, Jun Liu. CSDQA: Diagram Question Answering in Computer Science. CCKS 2021. (Best Resource Paper Award)
  • Yanzhang Lyu, Hongzhi Yin, Jun Liu, Mengyue Liu, Huan Liu, Shizhuo Deng. Reliable Recommendation with Review-level Explanations. ICDE 2021.
  • Wenjun Wu, Lingling Zhang, Yiwei Chen, Xuan Luo, Bifan Wei, Jun Liu. Fuzzy c-Means Clustering with Discriminative Projection. ICBK 2021.
  • Hongwei Zeng, Zhenjie Hong, Jun Liu, Bifan Wei. Multi-task Learning for Multi-turn Dialogue Generation with Topic Drift Modeling. ICBK 2021.
  • Hongxuan Li, Bifan Wei, Jun Liu, Zhaotong Guo, Jingchao Qi, Yong Liu, Yuanyuan Shi. ToFM: Topic-specific Facet Mining by Facet Propagation within Clusters. ICBK 2021.

2020

Book/Book Chapter

  • Siyu Yao, Ruijie Wang, Shen Sun, Derui Bu, Jun Liu. Joint Embedding Learning of Educational Knowledge Graphs. In: Pinkwart N., Liu S. (eds) Artificial Intelligence Supported Educational Technologies. Advances in Analytics for Learning and Teaching. Springer, 2020.

Journal Papers

  • Lingyun Song, Jun Liu, Mingxuan Sun, Xuequn Shang. Weakly Supervised Group Mask Network for Object Detection. IJCV, 2020, Accepted.
  • 麻珂欣, 魏笔凡, 马杰, 刘均, 黄毅, 胡珉, 冯俊兰. 知识主题间先序关系挖掘. 大数据, 2020, 已录用.
  • 姚思雨, 赵天哲, 王瑞杰, 刘均. 规则引导的知识图谱联合嵌入方法. 计算机研究与发展, 2020, 已录用.
  • Bei Wu, Bifan Wei, Jun Liu, Kewei Wu, Meng Wang. Faceted Text Segmentation via Multi-Task Learning. IEEE TNNLS, 2020, Accepted.
  • Xin Hu, Jun Liu, Jie Ma, Yudai Pan, Lingling Zhang. Fine-grained 3D-Attention Prototypes for Few-Shot Learning. Neural Computation, 2020, 32(9): 1664-1684.
  • Chenxu Wang, Wei Rao, Wenna Guo, Pinghui Wang, Jun Liu, Xiaohong Guan. Towards Understanding the Instability of Network Embedding. IEEE TKDE, 2020, Accepted.
  • Lingling Zhang, Xiaojun Chang, Jun Liu, Minnan Luo, Mahesh Prakash, Alexander Hauptmann. Few-Shot Activity Recognition with Cross-Modal Memory Network. Pattern Recognition, 2020, 108: 107348.
  • 范铭, 刘烣, 刘均, 罗夏朴, 于乐, 管晓宏. 安卓恶意软件检测方法综述. 中国科学: 信息科学, 2020, 50(8): 1148-1177.

Conference Papers

  • Lingling Zhang, Xiaojun Chang, Jun Liu, Sen Wang, Zongyuan Ge, Minnan Luo, Alexander Hauptmann. ZSTAD: Zero-Shot Temporal Activity Detection. CVPR 2020.

2019

Journal Papers

  • Ruijie Wang, Meng Wang, Jun Liu, Michael Cochez. Structured Query Construction via Knowledge Graph Embedding. KAIS, 2019, Accepted.
  • Lingling Zhang, Minnan Luo, Jun Liu, Xiaojun Chang, Yi Yang, Alexander G. Hauptmann. Deep Top-k Ranking for Image-Sentence Matching. IEEE TMM, 2019, 22(3): 775-785.
  • Lingling Zhang, Jun Liu, Minnan Luo, Xiaojun Chang, Qinghua Zheng, Alexander G. Hauptmann. Scheduled Sampling for One-Shot Learning via Matching Network. Pattern Recognition, 2019, 96: 106962.
  • Qinghua Zheng, Jun Liu, Hongwei Zeng, Zhaotong Guo, Bei Wu, Bifan Wei. Knowledge Forest: A Novel Model to Organize Knowledge Fragments. Science China (Information Sciences), 2019, Accepted.
  • Zheng Yan, Jun Liu, Laurence T. Yang, Witold Pedrycz. [Editorial] Data Fusion in Heterogeneous Networks. Information Fusion, 2020, 53, 1-3.
  • Ming Fan, Xiapu Luo, Jun Liu, Chunyin Nong, Qinghua Zheng, Ting Liu. CTDroid: Leveraging a Corpus of Technical Blogs for Android Malware Analysis. IEEE Transactions on Reliability, 2019, 69(1): 124-138.
  • Mengyue Liu, Jun Liu, Yihe Chen, Hao Chen, Meng Wang, Qinghua Zheng. AHNG: Representation Learning on Attributed Heterogeneous Network. Information Fusion, 2019, 50: 221-230.
  • 郑庆华, 董博, 钱步月, 田锋, 魏笔凡, 张未展, 刘均. 智慧教育研究现状与发展趋势. 计算机研究与发展, 2019, 56(1): 209-224.
  • Meng Wang, Jun Liu, Bifan Wei, Siyu Yao, Hongwei Zeng, Lei Shi. Answering Why-Not Questions on SPARQL Queries. KAIS, 2019, 58(1): 169-208.
  • Wenqiang Liu, Jun Liu, Bifan Wei, Yanan Qian, Haimeng Duan, Wei Hu, Xindong Wu. A New Truth Discovery Method for Resolving Object Conflicts over Linked Data with Scale-free Property. KAIS, 2019, 59(2): 465-495.

Conference Papers

  • Jie Ma, Jun Liu, Yufei Li, Xin Hu, Yudai Pan, Shen Sun, Qika Lin. Jointly Optimized Neural Coreference Resolution with Mutual Attention. WSDM 2019.
  • Ruijie Wang, Meng Wang, Jun Liu, Michael Cochez, Stefan Decker. Leveraging Knowledge Graph Embeddings for Natural Language Question Answering. DASFAA 2019.
  • Zhaotong Guo, Bifan Wei, Jun Liu, Bei Wu. TF-Miner: Topic-specific Facet Mining by Label Propagation. DASFAA 2019.
  • Luguo Xue, Minnan Luo, Zhen Peng, Jundong Li, Yan Chen, Jun Liu. Anomaly Detection in Time-Evolving Attributed Networks. DASFAA 2019.

2018

Journal Papers

  • Wenqiang Liu, Jun Liu, Mengmeng Wu, Wei Hu, Bifan Wei, Qinghua Zheng. Representation Learning over Multiple Knowledge Graphs for Knowledge Graphs Alignment. Neurocomputing, 2018, 320: 12-24.
  • Lingyun Song, Jun Liu, Buyue Qian, Mingxuan Sun, et al. A Deep Multi-Modal CNN for Multi-Instance Multi-Label Image Classification. IEEE TIP, 2018, 27(12): 6025-6038.
  • Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, Ting Liu. Android Malware Familial Classification and Representative Sample Selection via Frequent Subgraph Analysis. IEEE TIFS, 2018, 13(8): 1890-1905.
  • Bei Wu, Bifan Wei, Jun Liu, Zhaotong Guo, Yuanhao Zheng, Yihe Chen. Facet Annotation by Extending CNN with a Matching Strategy. Neural Computation, 2018, 30(6): 1647-1672.
  • Lingling Zhang, Jun Liu, Ninnan Luo, Xiaojun Chang, Qinghua Zheng. Deep Semi-supervised Zero-shot Learning with Maximum Mean Discrepancy. Neural Computation, 2018, 30(5): 1426-1447.
  • Lingling Zhang, Ninnan Luo, Zhihui Li, Feiping Nie, Huangxiang Zhang, Jun Liu, Qinghua Zheng. Large Scale Robust Semi-supervised Classification. IEEE Transactions on Cybernetics, 2018, 49(3): 907-917.
  • Zheng Yan, Jun Liu, Laurence T. Yang, Nitesh Chawla. [Editorial] Big Data Fusion in Internet of Things. Information Fusion, 2018, 40: 32-33.
  • Hao Chen, Jun Liu, Yanzhang Lv, Max Haifei Li, Mengyue Liu. Semi-supervised Clues Fusion for Spammer Detection in Sina Weibo. Information Fusion, 2018, 44: 22-32.

Conference Papers

  • Ming Fan, Xiapu Luo, Jun Liu, Meng Wang, Chunyin Nong, Qinghua Zheng, Ting Liu. Graph Embedding based Familial Analysis of Android Malware using Unsupervised Learning. ICSE 2019.
  • Ming Fan, Xiapu Luo, Jun Liu, Chunyin Nong, Qinghua Zheng, Ting Liu. CTDroid: Leveraging a Corpus of Technical Blogs for Android Malware Analysis. NASAC 2018. (Best Paper Award)
  • Lingyun Song, Jun Liu, Buyue Qian, Yihe Chen. Connecting Language to Images: A Progressive Attention-Guided Network for Simultaneous Image Captioning and Language Grounding. AAAI 2019.
  • Ruijie Wang, Meng Wang, Jun Liu. Graph Embedding based Query Construction over Knowledge Graphs. IEEE ICBK 2018. (Best Paper Award)
  • Ruoqing Ren, Haimeng Duan, Wenqiang Liu, Jun Liu. AUnet: An Unsupervised Method for Answer Reliability Evaluation in Community QA Systems. DMMOOC 2018.
  • Meng Wang, Ruijie Wang, Jun Liu, Yihe Chen, Lei Zhang, Guilin Qi. Towards Empty Answers in SPARQL: Approximating Querying with RDF Embedding. ISWC 2018. (Best Student Paper Award Candidate)
  • Yu Tong, Wang Meng, Lv Yanzhang, Xue Luguo, Jun Liu. Interpretative Topic Categorization via Deep Multiple Instance Learning. IJCNN 2018.
  • Hao Chen, Jun Liu, Yanzhang Lv. A Transfer Metric Learning Method for Spammer Detection. PAKDD 2018.

2017

Journal Papers

  • Lei Ding, Jun Liu, Tao Qin, Haifei Li. Internet Traffic Classification BasedMand on Expanding Vector of Flow. Computer Networks, 2017, 129: 178-192.
  • Meng Wang, Weitong Chen, Sen Wang, Jun Liu, Xue Li, Bela Stantic. Answering Why-Not Questions on Semantic Multimedia Queries. Multimedia Tools and Applications, 2017, 77(8): 1-25.
  • Lingyun Song, Jun Liu, Minnan Luo, Buyue Qian, Kuan Yang. Sparse Relational Topical Coding on Multi-Modal Data. Pattern Recognition, 2017, 72: 368-380.
  • Xindong Wu, Huanhuan Chen, Jun Liu, Gongqing Wu, Ruqian Lu, Nanning Zheng. Knowledge Engineering with Big Data (BigKE): A 54-Month, 45-Million RMB, 15-Institution National Grand Project. IEEE Access, 2017, 5(99): 12696-12701.
  • Ming Fan, Jun Liu, Wei Wang, Haifei Li, Zhenzhou Tian, Ting Liu. DAPASA: Detecting Android Piggybacked Apps through Sensitive Subgraph Analysis. IEEE TIFS, 2017, 12(8): 1772-1785.
  • Yanzhang Lv, Jun Liu, Hao Chen, Jianhong Mi, Mengyue Liu, Qinghua Zheng. Opinioned Post Detection in Sina Weibo. IEEE Access, 2017, 5(1): 7263-7271.
  • Jun Liu, Zheng Yan, Athanasios V. Vasilakos, Laurence T. Yang. [Editorial] Data Mining in Cyber, Physical and Social Computing. IEEE Systems Journal, 2017, 11(1): 194-196.
  • Minnan Luo, Lingling Zhang, Jun Liu, Qinghua Zheng. Distributed Extreme Learning Machine with Alternating Direction Method of Multiplier. Neurocomputing, 2017, 261: 164-170.

Conference Papers

  • Yuanhao Zheng, Bifan Wei, Jun Liu, Meng Wang, Weitong Chen, Bei Wu, Yihe Chen. Quality Prediction of Newly Proposed Questions in CQA by Leveraging Weakly Supervised Learning. ADMA 2017.
  • Meng Wang, Jiaheng Zhang, Jun Liu, Wei Hu, Sen Wang, Wenqiang Liu. PDD Graph: Bridging Electronic Medical Records and Biomedical Knowledge Graphs via Entity Linking. ISWC 2017.
  • Haimeng Duan, Yuanhao Zheng, Lei Shi, Changhong Jin, Hongwei Zeng, Jun Liu. DKG: An Expanded Knowledge Base for Online Course. DMMOOC 2017.
  • Wenqiang Liu, Jun Liu, Haimeng Duan, Wei Hu, Bifan Wei. Exploiting Source-Object Network to Resolve Object Conflicts in Linked Data. ESWC 2017.
  • Wenqiang Liu, Jun Liu, Haimeng Duan, Jian Zhang, Wei Hu, Bifan Wei. [Demo] TruthDiscover: Resolving Object Conflicts on Massive Linked Data. WWW 2017.

2009–2016

Journal Papers

  • Wenqiang Liu, Jun Liu, Meng Wang, Qinghua Zheng, Wei Zhang, Lingyun Song, Siyu Yao. Faceted Fusion of RDF Data. Information Fusion, 2015, 23: 16-24.
  • Weizhan Zhang, Jun Liu, Chen Liu, Qinghua Zheng, Wei Zhang. Workload Modeling for Virtual Machine-hosted Application. Expert Systems With Applications, 2015, 42(4): 1835-1844.
  • 吴信东, 陈欢欢, 刘均. 大数据知识工程基础理论及其应用研究. 中国计算机学会通讯, 2016, 12(11): 68-72.
  • Lingyun Song, Minnan Luo, Jun Liu, Lingling Zhang, Haifei Li, Qinghua Zheng. Sparse Multi-Modal Topical Coding for Image Annotation. Neurocomputing, 2016, 214: 162-174.
  • Xindong Wu, Huanhuan Chen, Gong-Qing Wu, Jun Liu, Qinghua Zheng, Xiaofeng He, Aoying Zhou, Zhong-Qiu Zhao, Bifan Wei, Ming Gao, Yang Li, Qiping Zhang, Shichao Zhang, Nanning Zheng. Knowledge Engineering with Big Data. IEEE Intelligent Systems, 2015, 30(5): 46-55.
  • Jun Liu, Zheng Yan, Laurance T. Yang. [Editorial] Fusion – An aide to data mining in Internet of Things. Information Fusion, 2015, 23: 1-2.
  • Zheng Yan, Jun Liu, Athanasios Vasilakos, Laurance T. Yang. [Editorial] Trustworthy Data Fusion and Mining in Internet of Things. FGCS, 2015, 49: 45-46.
  • Bifan Wei, Jun Liu, Qinghua Zheng, Wei Zhang, Chenchen Wang, Bei Wu. DF-Miner: Domain-specific Facet Mining by Leveraging the Hyperlink Structure of Wikipedia. Knowledge-Based Systems, 2015, 77: 80-91.
  • Bifan Wei, Jun Liu, Jian Ma, Qinghua Zheng, Wei Zhang, Boqin Feng. Motif-based Hyponym Relation Extraction from Wikipedia Hyperlinks. IEEE TKDE, 2014, 26(10): 2507-2519.
  • Bifan Wei, Jun Liu, Qinghua Zheng, Wei Zhang, Xiaoyu Fu, Boqin Feng. A Survey of Faceted Search. Journal of Web Engineering, 2013, 12(1-2): 41-64.
  • Jun Liu, Jincheng Wang, Qinghua Zheng, Wei Zhang, Lu Jiang. Topological Analysis of Knowledge Maps. Knowledge-Based Systems, 2012, 36: 260-267.
  • Jun Liu, Lu Jiang, Zhaohui Wu, Qinghua Zheng, Yanan Qian. Mining Learning-Dependency between Knowledge Units from Text. VLDB J., 2011, 20(3): 335-345.
  • Jun Liu, Lu Jiang, Zhaohui Wu, Qinghua Zheng. Deep Web Adaptive Crawling based on Minimum Executable Pattern. Journal of Intelligent Information Systems, 2011, 36(2): 197-215.

Conference Papers

  • Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Tianyi Chen, Zhenzhou Tian, Xiaodong Zhang, Ting Liu. Frequent Subgraph based Familial Classification of Android Malware. ISSRE 2016. (Best Paper Award)
  • Siyu Yao, Jun Liu, Meng Wang, Bifan Wei, Xuelu Chen. [Demo] ANNA: Answering Why-Not Questions for SPARQL. ISWC 2015.
  • Minnan Luo, Lingling Zhang, Qinghua Zheng, Jun Liu. Distributed Extreme Learning Machine with Alternating Direction Method of Multiplier. ELM 2015.
  • Meng Wang, Jun Liu, Wenqiang Liu, Qinghua Zheng, Wei Zhang, Lingyun Song, Siyu Yao. Faceted Exploring for Domain Knowledge over Linked Open Data. CIKM 2014.
  • Bifan Wei, Jun Liu, Jian Ma, Qinghua Zheng, Wei Zhang, Boqin Feng. DFT-extractor: A System to Extract Domain-specific Faceted Taxonomies from Wikipedia. WWW 2013.
  • Bifan Wei, Jun Liu, Jian Ma, Qinghua Zheng, Wei Zhang, Boqin Feng. MOTIF-RE: Motif-based Hypernym/hyponym Relation Extraction from Wikipedia Links. ICONIP 2012.
  • Jun Liu, Lu Jiang, Zhaohui Wu, Qinghua Zheng. Mining Preorder Relation between Knowledge Units from Text. ACM SAC 2010.