基本信息

  

 

陈强,青拔A类教授、博导

国家高层次青年人才

陕西省高层次人才

机械工程学院

每年招收1-2名博士研究生,3名硕士研究生,欢迎报考

招收2-3名本科生科研训练

欢迎同行学术交流和合作

 

Editorial Boards:

Composites Communications IF: 8) 

International Journal of Smart and Nano Materials (IF:3.9) 

Journal of Advanced Dielectrics 

 

 

联系方式

qiangchen@xjtu.edu.cn

kirkcq@gmail.com

qiang.chen@ensam.eu

 

个人主页:https://www.researchgate.net/profile/Qiang-Chen-38

Scopus Author ID: 55767126900

GitHub:  qiang-0817

站点计数器

研究领域

主要研究领域:

深度学习和数据驱动力学:物理信息深度均匀化方法(Physics-Informed Deep Homogenization Neural Networks Deep Fourier Homogenization Networks 方法提出者 

复合材料均匀化理论:有限体积法(FVDAM主要开发者),有限元,等几何法,Mori-Tanaka TFA

本构理论和损伤力学:形状记忆材料、热粘弹性、粘塑性、损伤本构理论、超弹性、大变形理论等

医工交叉方向:生物力学,担任法国和以色列Clevaligner公司 R&D部门Biomechanical Scientist,领导完成牙齿矫正软件开发

 

陈强教授瞄准重大需求,坚持基础研究循序渐进围绕航天航空和新能源汽车使用最广泛的聚合物基复合材料关键力学问题,系统性开展了多尺度细观力学非线性本构理论、损伤和破坏预报方法研究,理论技术在法国法雷奥、雷诺汽车公司和Polytechnyl Sas复合材料公司得以应用唯一第一或唯一通讯作者在国内外著名期刊Composites Science and Technology, Composites Part A, Composites Part B, International Journal of Plasticity, Computer Methods in Applied Mechanics and Engineering, International Journal of Solids and StructuresComposite StructuresEngineering Fracture MechanicsEuropean Journal of Mechanics A/Solids 等杂志发表SCI论文47。受复合材料顶刊Composites Part B主编邀请发表细观力学综述论文一篇。论文成果得到美国工程院和欧洲科学院院士Satya N. Atluri、法国大学研究院(Institut Universitaire de France)和西班牙皇家科学院资深院士Francisco Chinesta、欧洲力学学会会士(EUROMECH FellowPaul Steinmann教授、欧洲人文和自然科学院院士Macro Paggi美国机械工程师协会会士(ASME FellowWeidong Zhu等知名学者正面引用。以陈强教授为主发展的有限体积半解析细观力学理论得到了国内外同行广泛认可,被同济大学长江学者黄争鸣教授、浙江大学长江学者和国家杰出青年基金获得者陈伟球教授、法国艾克斯-马赛大学Frederic Lebon教授作为标准解进行对比。谷歌学术引用1000+,H因子18H10因子32,一篇论文入选美国机械工程师协会(ASME)会刊高被引论文Journal of Engineering Materials and Technology-ASME Transaction, 2016, Vol 138(3), pp 031005研究成果2次被国际知名工程学媒体Advances in Engineering 遴选为关键科学问题进行了专题报道。

陈强教授获得了2021年陕西省优秀博士论文、西安交大优秀博士论文、NSK优秀论文成果奖、Journal of Advanced Dielectrics 优秀青年编委,作为主要完成人获陕西高等学校科学技术一等奖1项(排名:7/9)。在欧洲固体力学大会、国际断裂力学大会和知名大学做学术报告,担任第二届先进材料和结构力学国际会议(ICMAMS 2019)分会场主席。 陈强教授担任SCI期刊Composites Communications IF: 8 International Journal of Smart and Nano Materials (IF:3.9) 青年编委。

 

第一作者

1. Chen, Q., Chen, X., Zhai, Z. and Yang, Z., 2016. A new and general formulation of three-dimensional finite-volume micromechanics for particulate reinforced composites with viscoplastic phases. Composites Part B: Engineering85, pp.216-232.

2. Chen, Q., Zhai, Z., Zhu, X., Xu, C. and Chen, X., 2017. Numerical simulation of strain rate effect on the inelastic behavior of metal matrix composites. Science and Engineering of Composite Materials24(2), pp.279-288.

3. Chen, Q., Chen, X., Zhai, Z., Zhu, X. and Yang, Z., 2016. Micromechanical modeling of viscoplastic behavior of laminated polymer composites with thermal residual stress effect. Journal of Engineering Materials and Technology138(3), p.031005.

4. Chen, Q., Wang, G., Chen, X. and Geng, J., 2017. Finite-volume homogenization of elastic/viscoelastic periodic materials. Composite Structures182, pp.457-470.

5. Chen, Q., Chen, X., Yang, Z., Zhai, Z. and Gao, J., 2018. Micromechanical modeling of plain woven polymer composites via 3D finite‐volume homogenization. Polymer Composites39(9), pp.3022-3032.

6. Chen, Q. and Wang, G., 2018. Homogenized and localized responses of coated magnetostrictive porous materials and structures. Composite Structures187, pp.102-115.

7. Chen, Q., Wang, G. and Pindera, M.J., 2018. Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 1: Theory and validation. European Journal of Mechanics-A/Solids70, pp.141-155.

8. Chen, Q., Wang, G. and Chen, X., 2018. Three-dimensional parametric finite-volume homogenization of periodic materials with multi-scale structural applications. International Journal of Applied Mechanics10(04), p.1850045.

9. Chen, Q., Wang, G. and Pindera, M.J., 2018. Homogenization and localization of nanoporous composites-A critical review and new developments. Composites Part B: Engineering155, pp.329-368.

10. Chen, Q., Tu, W., Liu, R. and Chen, X., 2018. Parametric multiphysics finite-volume theory for periodic composites with thermo-electro-elastic phases. Journal of Intelligent Material Systems and Structures29(4), pp.530-552.

11. Chen, Q. and Wang, G., 2019. PSO-driven micromechanical identification of in-situ properties of fiber-reinforced composites. Composite Structures220, pp.608-621.

12. Chen, Q. and Pindera, M.J., 2020. Homogenization and localization of elastic-plastic nanoporous materials with Gurtin-Murdoch interfaces: An assessment of computational approaches. International Journal of Plasticity124, pp.42-70.

13. Chen, Q., Sun, Y., Wang, G. and Pindera, M.J., 2019. Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 2: New results. European Journal of Mechanics-A/Solids73, pp.331-348.

14. Chen, Q. and Wang, G., 2020. Computationally-efficient homogenization and localization of unidirectional piezoelectric composites with partially cracked interface. Composite Structures232, p.111452.

15. Chen, Q., Tu, W. and Ma, M., 2020. Deep learning in heterogeneous materials: Targeting the thermo-mechanical response of unidirectional composites. Journal of Applied Physics127(17).

16. Chen, Q., Zhu, J., Tu, W. and Wang, G., 2021. A tangent finite-volume direct averaging micromechanics framework for elastoplastic porous materials: Theory and validation. International Journal of Plasticity139, p.102968.

17. Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2021. Hybrid hierarchical homogenization theory for unidirectional CNTs-coated fuzzy fiber composites undergoing inelastic deformations. Composites Science and Technology215, p.109012.

18. Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2021. Extended mean-field homogenization of viscoelastic-viscoplastic polymer composites undergoing hybrid progressive degradation induced by interface debonding and matrix ductile damage. International Journal of Solids and Structures210, pp.1-17.

19. Chen, Q., Jia, R. and Pang, S., 2021. Deep long short-term memory neural network for accelerated elastoplastic analysis of heterogeneous materials: An integrated data-driven surrogate approach. Composite Structures264, p.113688.

20. Chen, Q., Chen, W. and Wang, G., 2021. Fully-coupled electro-magneto-elastic behavior of unidirectional multiphased composites via finite-volume homogenization. Mechanics of Materials154, p.103553.

21. Chen, Q., Chatzigeorgiou, G., Meraghni, F. and Javili, A., 2022. Homogenization of size-dependent multiphysics behavior of nanostructured piezoelectric composites with energetic surfaces. European Journal of Mechanics-A/Solids96, p.104731.

22. Chen, Q., Chatzigeorgiou, G., Robert, G. and Meraghni, F., 2022. Viscoelastic-viscoplastic homogenization of short glass-fiber reinforced polyamide composites (PA66/GF) with progressive interphase and matrix damage: New developments and experimental validation. Mechanics of Materials164, p.104081.

23 Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2023. Extended mean-field homogenization of unidirectional piezoelectric nanocomposites with generalized Gurtin-Murdoch interfaces. Composite Structures307, p.116639.

24. Chen, Q., Meraghni, F. and Chatzigeorgiou, G., 2023. Recursive multiscale homogenization of multiphysics behavior of fuzzy fiber composites reinforced by hollow carbon nanotubes. Journal of Intelligent Material Systems and Structures34(4), pp.461-475.

25. Chen, Q., Chatzigeorgiou, G., Robert, G. and Meraghni, F., 2023. Combination of mean-field micromechanics and cycle jump technique for cyclic response of PA66/GF composites with viscoelastic–viscoplastic and damage mechanisms. Acta Mechanica234(4), pp.1533-1552.

26. Chen, Q., Du, X., Wang, W., Chatzigeorgiou, G., Meraghni, F. and Zhao, G., 2023. Isogeometric homogenization of viscoelastic polymer composites via correspondence principle. Composite Structures323, p.117475.

27. Chen, Q. and He, Z., 2023. Tailoring superelastic and transformation-induced plastic response of shape memory multilayers with wavy architectures. Mechanics of Advanced Materials and Structures, pp.1-16.

28. Chen, Q. and He, Z., 2024. Finite-volume micromechanics-based multiscale analysis of composite structural model accounting for elastoplastic and ductile damage mechanisms. Composites Communications, 45, p.101801.

29 Chen, Q., Xiao, C., Yang, Z., Tabet, J. and Chen, X., 2024. Deep neural network homogenization of multiphysics behavior for periodic piezoelectric composites. Composites Part A: Applied Science and Manufacturing, p.108421.

 

 

通讯作者:

1. Wang, G., Tu, W. and Chen, Q., 2019. Homogenization and localization of imperfectly bonded periodic fiber-reinforced composites. Mechanics of Materials139, p.103178.

2. Wang, G., Tu, W. and Chen, Q., 2019. Characterization of interphase/interface parameters of unidirectional fibrous composites by optimization-based inverse homogenization. International Journal of Applied Mechanics11(08), p.1950074.

3. Wang, G., Gao, M., Yang, B. and Chen, Q., 2020. The morphological effect of carbon fibers on the thermal conductive composites. International Journal of Heat and Mass Transfer152, p.119477.

4. Wang, G., Chen, Q., Gao, M., Yang, B. and Hui, D., 2020. Generalized locally-exact homogenization theory for evaluation of electric conductivity and resistance of multiphase materials. Nanotechnology Reviews9(1), pp.1-16.

5. Tu, W. and Chen, Q., 2020. Evolution of interfacial debonding of a unidirectional graphite/polyimide composite under off-axis loading. Engineering Fracture Mechanics230, p.106947.

6. Tu, W. and Chen, Q., 2020. Homogenization and localization of unidirectional fiber-reinforced composites with evolving damage by FVDAM and FEM approaches: A critical assessment. Engineering Fracture Mechanics239, p.107280.

7. Wang, G., He, Z. and Chen, Q., 2021. The surface effects on solid and hollow nanowires under diametral loading. Applied Mathematical Modelling96, pp.697-718.

8. Tu, W. and Chen, Q., 2021. Electromechanical response of multilayered piezoelectric BaTiO3/PZT-7A composites with wavy architecture. Journal of Intelligent Material Systems and Structures32(17), pp.1966-1986.

9. Jiang, J., Zhao, J., Pang, S., Meraghni, F., Siadat, A. and Chen, Q., 2022. Physics-informed deep neural network enabled discovery of size-dependent deformation mechanisms in nanostructures. International Journal of Solids and Structures236, p.111320.

10. Wu, J., Jiang, J., Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2023. Deep homogenization networks for elastic heterogeneous materials with two-and three-dimensional periodicity. International Journal of Solids and Structures284, p.112521.

11. Jiang, J., Wu, J., Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2023. Physically informed deep homogenization neural network for unidirectional multiphase/multi-inclusion thermoconductive composites. Computer Methods in Applied Mechanics and Engineering409, p.115972.

12. Tu, W., Wang, S. and Chen, Q., 2023. Continuum damage mechanics-based finite-volume homogenization of unidirectional elastoplastic fiber-reinforced composites. International Journal of Damage Mechanics32(4), pp.549-578.

13. He, Z., Liu, J. and Chen, Q., 2023. Higher-order asymptotic homogenization for piezoelectric composites. International Journal of Solids and Structures264, p.112092.

14. Wang, G., Huang, Y, Gao, M. and Chen, Q., 2024. Micromechanics of Thermal Conductive Composites: Review, Developments and Applications, Acta Mechanica Solida Sinica

15 Du, X., Chen, Q., George, C., Meraghni, F., Wang, W. and Zhao, G., 2024. Isogeometric homogenization of unidirectional nanocomposites with energetic surfaces. Acta Mechanica, pp.1-19.

16 Wu, J., Chen, Q., Jiang, J., Chatzigeorgiou, G. and Meraghni, F., 2024. Adaptive deep homogenization theory for periodic heterogeneous materials. Composite Structures,340, p.118171.

17 Du, X., Chen, Q., Chatzigeorgiou, G., Meraghni, F., Zhao, G. and Chen, X., 2024. Nitsche’s Method Enhanced Isogeometric Homogenization of Unidirectional Composites with Cylindrically Orthotropic Carbon/Graphite Fibers. Composites Science and Technology, 256(3), p.110787.

18 Tu, W., Jiang, H. and Chen, Q., 2024. Multiphysics Homogenization And Localization of Wavy Brick-And-Mortar Architectures with Piezoelectric Effects, Mechanics of Composite Materials, 60(4), pp. 703-716.

 

其他作者:

1. Zhu, X., Chen, X., Zhai, Z., Yang, Z. and Chen, Q., 2017. The effects of thermal residual stresses and interfacial properties on the transverse behaviors of fiber composites with different microstructures. Science and Engineering of Composite Materials24(1), pp.41-51.

2. Wang, G., Chen, Q., He, Z. and Pindera, M.J., 2018. Homogenized moduli and local stress fields of unidirectional nano-composites. Composites Part B: Engineering138, pp.265-277.

3. Chen, X., Wang, S., Qiao, B. and Chen, Q., 2018. Basic research on machinery fault diagnostics: Past, present, and future trends. Frontiers of Mechanical Engineering13, pp.264-291.

4. Zhao, X., Tu, W., Chen, Q. and Wang, G., 2021. Progressive modeling of transverse thermal conductivity of unidirectional natural fiber composites. International Journal of Thermal Sciences162, p.106782.

5. Zhao, X., Wang, G., Chen, Q., Duan, L. and Tu, W., 2021. An effective thermal conductivity and thermomechanical homogenization scheme for a multiscale Nb3Sn filaments. Nanotechnology Reviews10(1), pp.187-200.

6. Zhao, X., Wang, J., Chen, Q., Jiang, H., Chen, C. and Tu, W., 2023. Microstructure design and optimization of multilayered piezoelectric composites with wavy architectures. Mechanics of Advanced Materials and Structures, pp.1-17.

7. Chatzigeorgiou, G., Meraghni, F. and Chen, Q., 2024. Fully coupled nonlinear thermomechanical modeling of composites using mean-field Mori–Tanaka scheme combined with TFA theory. International Journal of Solids and Structures, 296, p.112828.