基本信息

  

 

陈强,青拔A类教授、博导

国家高层次青年人才

陕西省高层次人才

机械工程学院

每年招收1-2名博士研究生,4名硕士研究生,欢迎报考

招收2-3名本科生科研训练

欢迎同行学术交流和合作

 

Editorial Boards:

Composites Communications IF: 8) 

International Journal of Smart and Nano Materials (IF:3.9) 

Journal of Advanced Dielectrics 

《复合材料学报》

 

 

联系方式

qiangchen@xjtu.edu.cn

kirkcq@gmail.com

qiang.chen@ensam.eu

 

个人主页:https://www.researchgate.net/profile/Qiang-Chen-38

Scopus Author ID: 55767126900

GitHub:  qiang-0817

站点计数器

研究领域

主要研究领域:

深度学习和数据驱动力学:物理信息深度均匀化方法(Physics-Informed Deep Homogenization Neural Networks Deep Fourier Homogenization Networks 方法提出者 

复合材料均匀化理论:有限体积法(FVDAM主要开发者),有限元,等几何法,Mori-Tanaka TFA

本构理论和损伤力学:热力学一致性深度本构方法,形状记忆本构、热粘弹性、粘塑性、损伤本构、超弹性、大变形本构等

医工交叉方向:生物力学,担任法国和以色列Clevaligner公司 R&D部门Biomechanical Scientist,领导完成牙齿矫正软件开发

 

       陈强,西安交通大学机械工程学院“青年拔尖人才支持计划”A类教授,博士生导师,国家级青年人才。先后工作于美国弗吉尼亚大学、法国国立高等工程技术大学、法国AMVALOR公司,主要研究方向为非线性本构理论、复合材料损伤和强度理论、深度学习,研究成果在法国法雷奥和Polytechnyl Sas公司得以技术转化。在本领域知名学术期刊Comput. Methods Appl. Mech. Eng.Int. J. Plast.Int. J. Solids Struct.Compos. Sci. Technol.Composites Part AComposites Part B等发表唯一第一/通讯作者SCI论文49篇。主持承担国家级人才项目2项、重点研发项目(课题负责人)1项,中国和法国企业课题3项。担任Composites CommunicationsInt. J. Smart Nano Mater.、《复合材料学报》等多个杂志青年编委。

 

 

破解精度与效率的矛盾是复合材料力学研究的主要难题,解析法复杂而单一尺度唯象法缺乏机理解释性是复合材料力学分析瓶颈所在。细观力学长期以来被视为复合材料力学分析的关键策略,并取得了显著进展。然而,目前仅线弹性复合材料力学理论较为成熟,非线性本构关系、损伤及强度预测等问题仍缺乏成熟的解决方案。因此,建立准确的各向异性复合材料非线性本构关系和破坏预报理论,解析不同尺度复合材料结构损伤和破坏根源,具有重要的科学价值,既是近年来快速发展的力学领域的重要研究方向,也是复合材料在工艺过程、结构设计及安全健康监测中亟需解决的关键科学问题。

                                                                      亮点工作一: 纳米界面效应

    建立了纳观界面效应连续介质力学模型,获得了界面效应力学问题强形式解,解决了界面能和界面效应计算等关键问题,厘清了夹杂尺寸影响复合材料等效性能、非线性变形之间的定量规律。

                                      

                图1 发展了纳米尺度界面效应连续介质力学方法,揭示了尺寸效应根源

亮点工作:复合材料细观力学方法

提出了三维高精度有限体积半解析细观力学方法和物理信息和数据驱动的深度均匀化方法,建立了复合材料热---磁全场耦合分析理论,实现了适用于连续纤维、短纤维、颗粒和孔洞复合材料非线性本构描述,解决了复合材料弹塑性、粘弹性等强非线性力学计算关键问题。

                                                    

                                                       2适用于连续纤维、短纤维、颗粒和孔洞异质材料的非线性细观力学方法

亮点工作:复合材料结构损伤和强度预报

提出了聚合物基复合材料弱界面开裂计算新方法,构造了由开裂位移表示的界面损伤主、辅系统方程,建立了严格满足热力学一致性条件的粘弹性-粘塑性-损伤耦合非线性复合材料等效本构关系,开发了循环疲劳加载降阶建模高效算法,突破了高周疲劳损伤模拟耗时极长的技术瓶颈,形成了法国法雷奥公司复合材料结构多尺度力学分析软件蓝本。

3复合材料结构损伤和非线性变形本构理论

第一作者

1. Chen, Q., Chen, X., Zhai, Z. and Yang, Z., 2016. A new and general formulation of three-dimensional finite-volume micromechanics for particulate reinforced composites with viscoplastic phases. Composites Part B: Engineering85, pp.216-232.

2. Chen, Q., Zhai, Z., Zhu, X., Xu, C. and Chen, X., 2017. Numerical simulation of strain rate effect on the inelastic behavior of metal matrix composites. Science and Engineering of Composite Materials24(2), pp.279-288.

3. Chen, Q., Chen, X., Zhai, Z., Zhu, X. and Yang, Z., 2016. Micromechanical modeling of viscoplastic behavior of laminated polymer composites with thermal residual stress effect. Journal of Engineering Materials and Technology138(3), p.031005.

4. Chen, Q., Wang, G., Chen, X. and Geng, J., 2017. Finite-volume homogenization of elastic/viscoelastic periodic materials. Composite Structures182, pp.457-470.

5. Chen, Q., Chen, X., Yang, Z., Zhai, Z. and Gao, J., 2018. Micromechanical modeling of plain woven polymer composites via 3D finite‐volume homogenization. Polymer Composites39(9), pp.3022-3032.

6. Chen, Q. and Wang, G., 2018. Homogenized and localized responses of coated magnetostrictive porous materials and structures. Composite Structures187, pp.102-115.

7. Chen, Q., Wang, G. and Pindera, M.J., 2018. Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 1: Theory and validation. European Journal of Mechanics-A/Solids70, pp.141-155.

8. Chen, Q., Wang, G. and Chen, X., 2018. Three-dimensional parametric finite-volume homogenization of periodic materials with multi-scale structural applications. International Journal of Applied Mechanics10(04), p.1850045.

9. Chen, Q., Wang, G. and Pindera, M.J., 2018. Homogenization and localization of nanoporous composites-A critical review and new developments. Composites Part B: Engineering155, pp.329-368.

10. Chen, Q., Tu, W., Liu, R. and Chen, X., 2018. Parametric multiphysics finite-volume theory for periodic composites with thermo-electro-elastic phases. Journal of Intelligent Material Systems and Structures29(4), pp.530-552.

11. Chen, Q. and Wang, G., 2019. PSO-driven micromechanical identification of in-situ properties of fiber-reinforced composites. Composite Structures220, pp.608-621.

12. Chen, Q. and Pindera, M.J., 2020. Homogenization and localization of elastic-plastic nanoporous materials with Gurtin-Murdoch interfaces: An assessment of computational approaches. International Journal of Plasticity124, pp.42-70.

13. Chen, Q., Sun, Y., Wang, G. and Pindera, M.J., 2019. Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 2: New results. European Journal of Mechanics-A/Solids73, pp.331-348.

14. Chen, Q. and Wang, G., 2020. Computationally-efficient homogenization and localization of unidirectional piezoelectric composites with partially cracked interface. Composite Structures232, p.111452.

15. Chen, Q., Tu, W. and Ma, M., 2020. Deep learning in heterogeneous materials: Targeting the thermo-mechanical response of unidirectional composites. Journal of Applied Physics127(17).

16. Chen, Q., Zhu, J., Tu, W. and Wang, G., 2021. A tangent finite-volume direct averaging micromechanics framework for elastoplastic porous materials: Theory and validation. International Journal of Plasticity139, p.102968.

17. Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2021. Hybrid hierarchical homogenization theory for unidirectional CNTs-coated fuzzy fiber composites undergoing inelastic deformations. Composites Science and Technology215, p.109012.

18. Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2021. Extended mean-field homogenization of viscoelastic-viscoplastic polymer composites undergoing hybrid progressive degradation induced by interface debonding and matrix ductile damage. International Journal of Solids and Structures210, pp.1-17.

19. Chen, Q., Jia, R. and Pang, S., 2021. Deep long short-term memory neural network for accelerated elastoplastic analysis of heterogeneous materials: An integrated data-driven surrogate approach. Composite Structures264, p.113688.

20. Chen, Q., Chen, W. and Wang, G., 2021. Fully-coupled electro-magneto-elastic behavior of unidirectional multiphased composites via finite-volume homogenization. Mechanics of Materials154, p.103553.

21. Chen, Q., Chatzigeorgiou, G., Meraghni, F. and Javili, A., 2022. Homogenization of size-dependent multiphysics behavior of nanostructured piezoelectric composites with energetic surfaces. European Journal of Mechanics-A/Solids96, p.104731.

22. Chen, Q., Chatzigeorgiou, G., Robert, G. and Meraghni, F., 2022. Viscoelastic-viscoplastic homogenization of short glass-fiber reinforced polyamide composites (PA66/GF) with progressive interphase and matrix damage: New developments and experimental validation. Mechanics of Materials164, p.104081.

23 Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2023. Extended mean-field homogenization of unidirectional piezoelectric nanocomposites with generalized Gurtin-Murdoch interfaces. Composite Structures307, p.116639.

24. Chen, Q., Meraghni, F. and Chatzigeorgiou, G., 2023. Recursive multiscale homogenization of multiphysics behavior of fuzzy fiber composites reinforced by hollow carbon nanotubes. Journal of Intelligent Material Systems and Structures34(4), pp.461-475.

25. Chen, Q., Chatzigeorgiou, G., Robert, G. and Meraghni, F., 2023. Combination of mean-field micromechanics and cycle jump technique for cyclic response of PA66/GF composites with viscoelastic–viscoplastic and damage mechanisms. Acta Mechanica234(4), pp.1533-1552.

26. Chen, Q., Du, X., Wang, W., Chatzigeorgiou, G., Meraghni, F. and Zhao, G., 2023. Isogeometric homogenization of viscoelastic polymer composites via correspondence principle. Composite Structures323, p.117475.

27. Chen, Q. and He, Z., 2023. Tailoring superelastic and transformation-induced plastic response of shape memory multilayers with wavy architectures. Mechanics of Advanced Materials and Structures, pp.1-16.

28. Chen, Q. and He, Z., 2024. Finite-volume micromechanics-based multiscale analysis of composite structural model accounting for elastoplastic and ductile damage mechanisms. Composites Communications, 45, p.101801.

29 Chen, Q., Xiao, C., Yang, Z., Tabet, J. and Chen, X., 2024. Deep neural network homogenization of multiphysics behavior for periodic piezoelectric composites. Composites Part A: Applied Science and Manufacturing, p.108421.

30. Qiang Chen, George Chatzigeorgiou, Fodil Meraghni, Xuefeng Chen, Zhibo Yang, 2025. Physics-Informed Deep Homogenization Approach for Random Nanoporous Composites with Energetic Interfaces, Engineering Applications of Artificial Intelligence

31. Qiang Chen , Wenqiong Tu, Jiajun Wu, Zhelong He, George Chatzigeorgiou, Fodil Meraghni, Zhibo Yang , Xuefeng Chen,2025, Elasticity-inspired data-driven micromechanics theory for unidirectional composites with interfacial damage, European Journal of Mechanics / A Solids

 

通讯作者:

1. Wang, G., Tu, W. and Chen, Q., 2019. Homogenization and localization of imperfectly bonded periodic fiber-reinforced composites. Mechanics of Materials139, p.103178.

2. Wang, G., Tu, W. and Chen, Q., 2019. Characterization of interphase/interface parameters of unidirectional fibrous composites by optimization-based inverse homogenization. International Journal of Applied Mechanics11(08), p.1950074.

3. Wang, G., Gao, M., Yang, B. and Chen, Q., 2020. The morphological effect of carbon fibers on the thermal conductive composites. International Journal of Heat and Mass Transfer152, p.119477.

4. Wang, G., Chen, Q., Gao, M., Yang, B. and Hui, D., 2020. Generalized locally-exact homogenization theory for evaluation of electric conductivity and resistance of multiphase materials. Nanotechnology Reviews9(1), pp.1-16.

5. Tu, W. and Chen, Q., 2020. Evolution of interfacial debonding of a unidirectional graphite/polyimide composite under off-axis loading. Engineering Fracture Mechanics230, p.106947.

6. Tu, W. and Chen, Q., 2020. Homogenization and localization of unidirectional fiber-reinforced composites with evolving damage by FVDAM and FEM approaches: A critical assessment. Engineering Fracture Mechanics239, p.107280.

7. Wang, G., He, Z. and Chen, Q., 2021. The surface effects on solid and hollow nanowires under diametral loading. Applied Mathematical Modelling96, pp.697-718.

8. Tu, W. and Chen, Q., 2021. Electromechanical response of multilayered piezoelectric BaTiO3/PZT-7A composites with wavy architecture. Journal of Intelligent Material Systems and Structures32(17), pp.1966-1986.

9. Jiang, J., Zhao, J., Pang, S., Meraghni, F., Siadat, A. and Chen, Q., 2022. Physics-informed deep neural network enabled discovery of size-dependent deformation mechanisms in nanostructures. International Journal of Solids and Structures236, p.111320.

10. Wu, J., Jiang, J., Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2023. Deep homogenization networks for elastic heterogeneous materials with two-and three-dimensional periodicity. International Journal of Solids and Structures284, p.112521.

11. Jiang, J., Wu, J., Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2023. Physically informed deep homogenization neural network for unidirectional multiphase/multi-inclusion thermoconductive composites. Computer Methods in Applied Mechanics and Engineering409, p.115972.

12. Tu, W., Wang, S. and Chen, Q., 2023. Continuum damage mechanics-based finite-volume homogenization of unidirectional elastoplastic fiber-reinforced composites. International Journal of Damage Mechanics32(4), pp.549-578.

13. He, Z., Liu, J. and Chen, Q., 2023. Higher-order asymptotic homogenization for piezoelectric composites. International Journal of Solids and Structures264, p.112092.

14. Wang, G., Huang, Y, Gao, M. and Chen, Q., 2024. Micromechanics of Thermal Conductive Composites: Review, Developments and Applications, Acta Mechanica Solida Sinica

15 Du, X., Chen, Q., George, C., Meraghni, F., Wang, W. and Zhao, G., 2024. Isogeometric homogenization of unidirectional nanocomposites with energetic surfaces. Acta Mechanica, pp.1-19.

16 Wu, J., Chen, Q., Jiang, J., Chatzigeorgiou, G. and Meraghni, F., 2024. Adaptive deep homogenization theory for periodic heterogeneous materials. Composite Structures,340, p.118171.

17 Du, X., Chen, Q., Chatzigeorgiou, G., Meraghni, F., Zhao, G. and Chen, X., 2024. Nitsche’s Method Enhanced Isogeometric Homogenization of Unidirectional Composites with Cylindrically Orthotropic Carbon/Graphite Fibers. Composites Science and Technology, 256(3), p.110787.

18 Tu, W., Jiang, H. and Chen, Q., 2024. Multiphysics Homogenization And Localization of Wavy Brick-And-Mortar Architectures with Piezoelectric Effects, Mechanics of Composite Materials, 60(4), pp. 703-716.

 

其他作者:

1. Zhu, X., Chen, X., Zhai, Z., Yang, Z. and Chen, Q., 2017. The effects of thermal residual stresses and interfacial properties on the transverse behaviors of fiber composites with different microstructures. Science and Engineering of Composite Materials24(1), pp.41-51.

2. Wang, G., Chen, Q., He, Z. and Pindera, M.J., 2018. Homogenized moduli and local stress fields of unidirectional nano-composites. Composites Part B: Engineering138, pp.265-277.

3. Chen, X., Wang, S., Qiao, B. and Chen, Q., 2018. Basic research on machinery fault diagnostics: Past, present, and future trends. Frontiers of Mechanical Engineering13, pp.264-291.

4. Zhao, X., Tu, W., Chen, Q. and Wang, G., 2021. Progressive modeling of transverse thermal conductivity of unidirectional natural fiber composites. International Journal of Thermal Sciences162, p.106782.

5. Zhao, X., Wang, G., Chen, Q., Duan, L. and Tu, W., 2021. An effective thermal conductivity and thermomechanical homogenization scheme for a multiscale Nb3Sn filaments. Nanotechnology Reviews10(1), pp.187-200.

6. Zhao, X., Wang, J., Chen, Q., Jiang, H., Chen, C. and Tu, W., 2023. Microstructure design and optimization of multilayered piezoelectric composites with wavy architectures. Mechanics of Advanced Materials and Structures, pp.1-17.

7. Chatzigeorgiou, G., Meraghni, F. and Chen, Q., 2024. Fully coupled nonlinear thermomechanical modeling of composites using mean-field Mori–Tanaka scheme combined with TFA theory. International Journal of Solids and Structures, 296, p.112828.

8. He, Z., Zheng, J., Chen, Q. and Liu, J., 2024. Design optimization of continuous fiber composites with thermo-mechanical coupling and load uncertainties. Composites Communications, p.102143.