主要研究领域:
深度学习和数据驱动力学:物理信息深度均匀化方法(Physics-Informed Deep Homogenization Neural Networks 和 Deep Fourier Homogenization Networks 方法提出者 )
复合材料均匀化理论:有限体积法(FVDAM主要开发者),有限元,等几何法,Mori-Tanaka TFA
本构理论和损伤力学:形状记忆材料、热粘弹性、粘塑性、损伤本构理论、超弹性、大变形理论等
医工交叉方向:生物力学,担任法国和以色列Clevaligner公司 R&D部门Biomechanical Scientist,领导完成牙齿矫正软件开发
陈强教授瞄准重大需求,坚持基础研究循序渐进。围绕航天航空和新能源汽车使用最广泛的聚合物基复合材料关键力学问题,系统性开展了多尺度细观力学非线性本构理论、损伤和破坏预报方法研究,理论技术在法国法雷奥、雷诺汽车公司和Polytechnyl Sas复合材料公司得以应用。以唯一第一或唯一通讯作者在国内外著名期刊Composites Science and Technology, Composites Part A, Composites Part B, International Journal of Plasticity, Computer Methods in Applied Mechanics and Engineering, International Journal of Solids and Structures,Composite Structures,Engineering Fracture Mechanics,European Journal of Mechanics A/Solids 等杂志发表SCI论文49篇。受复合材料顶刊Composites Part B主编邀请发表细观力学综述论文一篇。论文成果得到美国工程院和欧洲科学院院士Satya N. Atluri、法国大学研究院(Institut Universitaire de France)和西班牙皇家科学院资深院士Francisco Chinesta、欧洲力学学会会士(EUROMECH Fellow)Paul Steinmann教授、欧洲人文和自然科学院院士Macro Paggi、美国机械工程师协会会士(ASME Fellow)Weidong Zhu等知名学者正面引用。以陈强教授为主发展的有限体积半解析细观力学理论得到了国内外同行广泛认可,被同济大学长江学者黄争鸣教授、浙江大学长江学者和国家杰出青年基金获得者陈伟球教授、法国艾克斯-马赛大学Frederic Lebon教授作为标准解进行对比。谷歌学术引用1000+,H因子18,H10因子32,一篇论文入选美国机械工程师协会(ASME)会刊高被引论文(Journal of Engineering Materials and Technology-ASME Transaction, 2016, Vol 138(3), pp 031005)。研究成果2次被国际知名工程学媒体Advances in Engineering 遴选为关键科学问题进行了专题报道。
陈强教授获得了2021年陕西省优秀博士论文、西安交大优秀博士论文、NSK优秀论文成果奖、Journal of Advanced Dielectrics 优秀青年编委,作为主要完成人获 “陕西高等学校科学技术”一等奖1项(排名:7/9)。在欧洲固体力学大会、国际断裂力学大会和知名大学做学术报告,担任第二届先进材料和结构力学国际会议(ICMAMS 2019)分会场主席。 陈强教授担任SCI期刊Composites Communications (IF: 8) 和 International Journal of Smart and Nano Materials (IF:3.9) 青年编委。
第一作者:
1. Chen, Q., Chen, X., Zhai, Z. and Yang, Z., 2016. A new and general formulation of three-dimensional finite-volume micromechanics for particulate reinforced composites with viscoplastic phases. Composites Part B: Engineering, 85, pp.216-232.
2. Chen, Q., Zhai, Z., Zhu, X., Xu, C. and Chen, X., 2017. Numerical simulation of strain rate effect on the inelastic behavior of metal matrix composites. Science and Engineering of Composite Materials, 24(2), pp.279-288.
3. Chen, Q., Chen, X., Zhai, Z., Zhu, X. and Yang, Z., 2016. Micromechanical modeling of viscoplastic behavior of laminated polymer composites with thermal residual stress effect. Journal of Engineering Materials and Technology, 138(3), p.031005.
4. Chen, Q., Wang, G., Chen, X. and Geng, J., 2017. Finite-volume homogenization of elastic/viscoelastic periodic materials. Composite Structures, 182, pp.457-470.
5. Chen, Q., Chen, X., Yang, Z., Zhai, Z. and Gao, J., 2018. Micromechanical modeling of plain woven polymer composites via 3D finite‐volume homogenization. Polymer Composites, 39(9), pp.3022-3032.
6. Chen, Q. and Wang, G., 2018. Homogenized and localized responses of coated magnetostrictive porous materials and structures. Composite Structures, 187, pp.102-115.
7. Chen, Q., Wang, G. and Pindera, M.J., 2018. Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 1: Theory and validation. European Journal of Mechanics-A/Solids, 70, pp.141-155.
8. Chen, Q., Wang, G. and Chen, X., 2018. Three-dimensional parametric finite-volume homogenization of periodic materials with multi-scale structural applications. International Journal of Applied Mechanics, 10(04), p.1850045.
9. Chen, Q., Wang, G. and Pindera, M.J., 2018. Homogenization and localization of nanoporous composites-A critical review and new developments. Composites Part B: Engineering, 155, pp.329-368.
10. Chen, Q., Tu, W., Liu, R. and Chen, X., 2018. Parametric multiphysics finite-volume theory for periodic composites with thermo-electro-elastic phases. Journal of Intelligent Material Systems and Structures, 29(4), pp.530-552.
11. Chen, Q. and Wang, G., 2019. PSO-driven micromechanical identification of in-situ properties of fiber-reinforced composites. Composite Structures, 220, pp.608-621.
12. Chen, Q. and Pindera, M.J., 2020. Homogenization and localization of elastic-plastic nanoporous materials with Gurtin-Murdoch interfaces: An assessment of computational approaches. International Journal of Plasticity, 124, pp.42-70.
13. Chen, Q., Sun, Y., Wang, G. and Pindera, M.J., 2019. Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 2: New results. European Journal of Mechanics-A/Solids, 73, pp.331-348.
14. Chen, Q. and Wang, G., 2020. Computationally-efficient homogenization and localization of unidirectional piezoelectric composites with partially cracked interface. Composite Structures, 232, p.111452.
15. Chen, Q., Tu, W. and Ma, M., 2020. Deep learning in heterogeneous materials: Targeting the thermo-mechanical response of unidirectional composites. Journal of Applied Physics, 127(17).
16. Chen, Q., Zhu, J., Tu, W. and Wang, G., 2021. A tangent finite-volume direct averaging micromechanics framework for elastoplastic porous materials: Theory and validation. International Journal of Plasticity, 139, p.102968.
17. Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2021. Hybrid hierarchical homogenization theory for unidirectional CNTs-coated fuzzy fiber composites undergoing inelastic deformations. Composites Science and Technology, 215, p.109012.
18. Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2021. Extended mean-field homogenization of viscoelastic-viscoplastic polymer composites undergoing hybrid progressive degradation induced by interface debonding and matrix ductile damage. International Journal of Solids and Structures, 210, pp.1-17.
19. Chen, Q., Jia, R. and Pang, S., 2021. Deep long short-term memory neural network for accelerated elastoplastic analysis of heterogeneous materials: An integrated data-driven surrogate approach. Composite Structures, 264, p.113688.
20. Chen, Q., Chen, W. and Wang, G., 2021. Fully-coupled electro-magneto-elastic behavior of unidirectional multiphased composites via finite-volume homogenization. Mechanics of Materials, 154, p.103553.
21. Chen, Q., Chatzigeorgiou, G., Meraghni, F. and Javili, A., 2022. Homogenization of size-dependent multiphysics behavior of nanostructured piezoelectric composites with energetic surfaces. European Journal of Mechanics-A/Solids, 96, p.104731.
22. Chen, Q., Chatzigeorgiou, G., Robert, G. and Meraghni, F., 2022. Viscoelastic-viscoplastic homogenization of short glass-fiber reinforced polyamide composites (PA66/GF) with progressive interphase and matrix damage: New developments and experimental validation. Mechanics of Materials, 164, p.104081.
23 Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2023. Extended mean-field homogenization of unidirectional piezoelectric nanocomposites with generalized Gurtin-Murdoch interfaces. Composite Structures, 307, p.116639.
24. Chen, Q., Meraghni, F. and Chatzigeorgiou, G., 2023. Recursive multiscale homogenization of multiphysics behavior of fuzzy fiber composites reinforced by hollow carbon nanotubes. Journal of Intelligent Material Systems and Structures, 34(4), pp.461-475.
25. Chen, Q., Chatzigeorgiou, G., Robert, G. and Meraghni, F., 2023. Combination of mean-field micromechanics and cycle jump technique for cyclic response of PA66/GF composites with viscoelastic–viscoplastic and damage mechanisms. Acta Mechanica, 234(4), pp.1533-1552.
26. Chen, Q., Du, X., Wang, W., Chatzigeorgiou, G., Meraghni, F. and Zhao, G., 2023. Isogeometric homogenization of viscoelastic polymer composites via correspondence principle. Composite Structures, 323, p.117475.
27. Chen, Q. and He, Z., 2023. Tailoring superelastic and transformation-induced plastic response of shape memory multilayers with wavy architectures. Mechanics of Advanced Materials and Structures, pp.1-16.
28. Chen, Q. and He, Z., 2024. Finite-volume micromechanics-based multiscale analysis of composite structural model accounting for elastoplastic and ductile damage mechanisms. Composites Communications, 45, p.101801.
29 Chen, Q., Xiao, C., Yang, Z., Tabet, J. and Chen, X., 2024. Deep neural network homogenization of multiphysics behavior for periodic piezoelectric composites. Composites Part A: Applied Science and Manufacturing, p.108421.
30. Qiang Chen, George Chatzigeorgiou, Fodil Meraghni, Xuefeng Chen, Zhibo Yang, 2024. Physics-Informed Deep Homogenization Approach for Random Nanoporous Composites with Energetic Interfaces, Engineering Applications of Artificial Intelligence
31. Qiang Chen , Wenqiong Tu, Jiajun Wu, Zhelong He, George Chatzigeorgiou, Fodil Meraghni, Zhibo Yang , Xuefeng Chen,2024, Elasticity-inspired data-driven micromechanics theory for unidirectional composites with interfacial damage, European Journal of Mechanics / A Solids
通讯作者:
1. Wang, G., Tu, W. and Chen, Q., 2019. Homogenization and localization of imperfectly bonded periodic fiber-reinforced composites. Mechanics of Materials, 139, p.103178.
2. Wang, G., Tu, W. and Chen, Q., 2019. Characterization of interphase/interface parameters of unidirectional fibrous composites by optimization-based inverse homogenization. International Journal of Applied Mechanics, 11(08), p.1950074.
3. Wang, G., Gao, M., Yang, B. and Chen, Q., 2020. The morphological effect of carbon fibers on the thermal conductive composites. International Journal of Heat and Mass Transfer, 152, p.119477.
4. Wang, G., Chen, Q., Gao, M., Yang, B. and Hui, D., 2020. Generalized locally-exact homogenization theory for evaluation of electric conductivity and resistance of multiphase materials. Nanotechnology Reviews, 9(1), pp.1-16.
5. Tu, W. and Chen, Q., 2020. Evolution of interfacial debonding of a unidirectional graphite/polyimide composite under off-axis loading. Engineering Fracture Mechanics, 230, p.106947.
6. Tu, W. and Chen, Q., 2020. Homogenization and localization of unidirectional fiber-reinforced composites with evolving damage by FVDAM and FEM approaches: A critical assessment. Engineering Fracture Mechanics, 239, p.107280.
7. Wang, G., He, Z. and Chen, Q., 2021. The surface effects on solid and hollow nanowires under diametral loading. Applied Mathematical Modelling, 96, pp.697-718.
8. Tu, W. and Chen, Q., 2021. Electromechanical response of multilayered piezoelectric BaTiO3/PZT-7A composites with wavy architecture. Journal of Intelligent Material Systems and Structures, 32(17), pp.1966-1986.
9. Jiang, J., Zhao, J., Pang, S., Meraghni, F., Siadat, A. and Chen, Q., 2022. Physics-informed deep neural network enabled discovery of size-dependent deformation mechanisms in nanostructures. International Journal of Solids and Structures, 236, p.111320.
10. Wu, J., Jiang, J., Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2023. Deep homogenization networks for elastic heterogeneous materials with two-and three-dimensional periodicity. International Journal of Solids and Structures, 284, p.112521.
11. Jiang, J., Wu, J., Chen, Q., Chatzigeorgiou, G. and Meraghni, F., 2023. Physically informed deep homogenization neural network for unidirectional multiphase/multi-inclusion thermoconductive composites. Computer Methods in Applied Mechanics and Engineering, 409, p.115972.
12. Tu, W., Wang, S. and Chen, Q., 2023. Continuum damage mechanics-based finite-volume homogenization of unidirectional elastoplastic fiber-reinforced composites. International Journal of Damage Mechanics, 32(4), pp.549-578.
13. He, Z., Liu, J. and Chen, Q., 2023. Higher-order asymptotic homogenization for piezoelectric composites. International Journal of Solids and Structures, 264, p.112092.
14. Wang, G., Huang, Y, Gao, M. and Chen, Q., 2024. Micromechanics of Thermal Conductive Composites: Review, Developments and Applications, Acta Mechanica Solida Sinica
15 Du, X., Chen, Q., George, C., Meraghni, F., Wang, W. and Zhao, G., 2024. Isogeometric homogenization of unidirectional nanocomposites with energetic surfaces. Acta Mechanica, pp.1-19.
16 Wu, J., Chen, Q., Jiang, J., Chatzigeorgiou, G. and Meraghni, F., 2024. Adaptive deep homogenization theory for periodic heterogeneous materials. Composite Structures,340, p.118171.
17 Du, X., Chen, Q., Chatzigeorgiou, G., Meraghni, F., Zhao, G. and Chen, X., 2024. Nitsche’s Method Enhanced Isogeometric Homogenization of Unidirectional Composites with Cylindrically Orthotropic Carbon/Graphite Fibers. Composites Science and Technology, 256(3), p.110787.
18 Tu, W., Jiang, H. and Chen, Q., 2024. Multiphysics Homogenization And Localization of Wavy Brick-And-Mortar Architectures with Piezoelectric Effects, Mechanics of Composite Materials, 60(4), pp. 703-716.
其他作者:
1. Zhu, X., Chen, X., Zhai, Z., Yang, Z. and Chen, Q., 2017. The effects of thermal residual stresses and interfacial properties on the transverse behaviors of fiber composites with different microstructures. Science and Engineering of Composite Materials, 24(1), pp.41-51.
2. Wang, G., Chen, Q., He, Z. and Pindera, M.J., 2018. Homogenized moduli and local stress fields of unidirectional nano-composites. Composites Part B: Engineering, 138, pp.265-277.
3. Chen, X., Wang, S., Qiao, B. and Chen, Q., 2018. Basic research on machinery fault diagnostics: Past, present, and future trends. Frontiers of Mechanical Engineering, 13, pp.264-291.
4. Zhao, X., Tu, W., Chen, Q. and Wang, G., 2021. Progressive modeling of transverse thermal conductivity of unidirectional natural fiber composites. International Journal of Thermal Sciences, 162, p.106782.
5. Zhao, X., Wang, G., Chen, Q., Duan, L. and Tu, W., 2021. An effective thermal conductivity and thermomechanical homogenization scheme for a multiscale Nb3Sn filaments. Nanotechnology Reviews, 10(1), pp.187-200.
6. Zhao, X., Wang, J., Chen, Q., Jiang, H., Chen, C. and Tu, W., 2023. Microstructure design and optimization of multilayered piezoelectric composites with wavy architectures. Mechanics of Advanced Materials and Structures, pp.1-17.
7. Chatzigeorgiou, G., Meraghni, F. and Chen, Q., 2024. Fully coupled nonlinear thermomechanical modeling of composites using mean-field Mori–Tanaka scheme combined with TFA theory. International Journal of Solids and Structures, 296, p.112828.
8. He, Z., Zheng, J., Chen, Q. and Liu, J., 2024. Design optimization of continuous fiber composites with thermo-mechanical coupling and load uncertainties. Composites Communications, p.102143.