基本信息

 

 

尤波 (教授、博导)

 

西安交通大学数学与统计学院

北五楼417

 

陕西省西安市咸宁西路28        

电话:029-82665685

邮箱:youb2013@xjtu.edu.cn

邮编:710049

 

 

 

 

 

 

 

 

 

 

学习、工作经历

[2022.01 - 0000.00] 西安交通大学数学与统计学院 / 教授

[2016.05 - 2021.12] 西安交通大学数学与统计学院 / 副教授

[2014.09 - 2015.09] 佛罗里达州立大学数学系 / 访问学者 / 合作导师:Professor Xiaoming Wang

[2013.03 - 2016.04] 西安交通大学数学与统计学院 / 助理教授

[2012.12 - 2016.06] 西安交通大学数学与统计学院 / 博士后 / 合作导师:侯延仁教授

 

[2007.09 - 2012.12] 理学博士 / 兰州大学数学与统计学院 / 导师:钟承奎教授

[2003.09 - 2007.06] 理学学士 / 兰州大学数学与统计学院基地班

 

 

研究经历

[研究方向]

非线性泛函分析与无穷维动力系统

 

[研究兴趣]

 

随机偏微分方程 (解的适定性、正则性、长时间渐近性态、不变测度、大偏差理论、遍历性质)

非线性分析及无穷维动力系统 (吸引子、分歧、统计性质、统计推断、流体力学中的应用)

非线性分析及控制理论 (最优控制、Carleman估计及其在可控性、反问题、数据同化中的应用,特别是在大气科学及肿瘤生长模型中的应用)

 

 

[科研项目]

 

 

[2023.01 - 2023.12] 国家自然科学基金 (20万 / 非线性泛函分析及随机偏微分方程天元数学讲习班)

[2022.01 - 2024.12] 西安交通大学基本科研业务费 (10万 / 随机肿瘤生长模型的最优控制问题)

[2019.01 - 2022.12] 国家自然科学基金 (53万 / 一类趋化与主动传输作用下肿瘤生长扩散界面模型的动力学行为研究)

[2018.01 - 2019.12] 陕西省自然科学基金 (5万 / 层列型液晶流Ericksen-Leslie方程组动力学的研究)

[2018.01 - 2020.12] 西安交通大学基本科研业务费 (15万 / 肿瘤生长扩散界面模型的动力学行为)                      

[2015.01 - 2017.12] 国家自然科学基金 (22万 / 大尺度大气海洋本原方程组的长时间行为)               

[2015.01 - 2016.12] 陕西省自然科学基金 (2万 / 三维大尺度海洋环流的行星地转方程组的长时间行为)     

[2013.12 - 2015.12] 博士后基金 (5万 / 关于大尺度大气本原方程组的研究)                                                  

教学经历

 

[本科生授课]

 

[2024 - 2025秋] 泛函分析 (信计2201+应数2201+统计2201,主讲,64课时)

[2024 - 2025秋] 数学物理方法 (电气2301,电气2302,电气2303,电气2304,电气2305,主讲,32课时)

[2024 - 2025秋] 数学物理方法 (电气2306,电气2307,电气2308,电气2309,电气2310,主讲,32课时)

[2023 - 2024春] 实变函数论 (信计2201+应数2201+统计2201,主讲,48课时)

[2023 - 2024秋] 泛函分析 (信计2101+应数2101+统计2101,主讲,64课时)

[2023 - 2024秋] 数学物理方法 ( 材料越杰2201,储能(电气)2201,电气2213,电气越杰2201,机械越杰2201,能源互联网2201,主讲,32课时)

[2022 - 2023春] 实变函数论 (信计2101+应数2101+统计2101,主讲,48课时)

[2022 - 2023秋] 泛函分析 (信计001+应数001+统计001,主讲,64课时)

[2021 - 2022秋] 泛函分析 (信计91+应数91+统计91,主讲,64课时)

[2020 - 2021秋] 泛函分析 (数试81+数试82,主讲,64课时)

[2019 - 2020秋] 泛函分析 (信计71+应数71+统计71,主讲,64课时)

[2018 - 2019秋] 偏微分方程 (数学专业第5学期, 主讲, 64课时)

[2018 - 2019秋] 数学物理方法 (能动专业第5学期, 主讲, 32课时)

 

[研究生授课]

 

[2023 - 2024秋] Carleman估计及其应用 (数学专业研究生选修课, 主讲, 32课时)

[2022 - 2023秋] Carleman估计及其应用 (数学专业研究生选修课, 主讲, 32课时)

[2021 - 2022秋] 非线性分析 (数学专业研究生学位课, 主讲, 68课时)

[2020 - 2021秋] 非线性分析 (数学专业研究生学位课, 主讲, 68课时)

[2019 - 2020秋] 非线性分析 (数学专业研究生学位课, 主讲, 68课时)

[2018 - 2019秋] 非线性分析 (数学专业研究生学位课, 主讲, 36课时)

[2018 - 2019秋] 椭圆与抛物方程 (主讲, 36课时) 

[2017 - 2018秋] 椭圆与抛物方程 (主讲, 40课时)

[2016 - 2017秋] 椭圆与抛物方程 (主讲, 40课时)

[2015 - 2016秋] 椭圆与抛物方程 (主讲, 40课时)

[2013 - 2014秋] Sobolev空间与偏微分方程的L^2理论 (主讲, 40课时)

[2013 - 2014秋] 椭圆与抛物方程 (主讲, 40课时)

[2012 - 2013春] 近世代数 (辅导, 48课时)

Publications

[48] Bo You, Continuous data assimilation for the three dimensional planetary geostrophic equations of large-scale ocean circulation. Z.  Angew. Math. Phys.75 (2024),  https://doi.org/10.1007/s00033-024-02286-9.

 

[47] Fang Li, Bo You, Optimal control of a phase field tumor growth model with chemotaxis and active transport. J. Nonlinear Var. Anal. 8 (2024), no. 1, 41-65.

 

[46] Bo You, A discrete data assimilation algorithm for the three dimensional planetary geostrophic equations of large-scale ocean circulation. J. Dynam. Differential Equations. 36 (2024), no. 2, 1591-1615.

 

[45] Fang Li, Bo You, Global attractor of the Euler-Bernoulli equations with a localized nonlinear damping. Discrete Contin. Dyn. Syst. 44 (2024), no. 9, 2641-2659.

 

[44] Bo You, Optimal distributed control for a Cahn-Hilliard type phase field system related to tumor growth. Math. Control Relat. Fields. 14 (2024), no.2, 575-609.

 

[43] Bo You, Pullback exponential attractors for the three dimensional non-autonomous primitive equations of large scale ocean and atmosphere dynamics. Commun. Math.Sci.21 (2023), no.5, 1415-1445.

 

[42] Shan Ma, Bo You, Global attractors for a class of degenerate parabolic equations with memory. Discrete Contin. Dyn. Syst. Ser. 
B. 28 (2023), no. 3, 2044-2055.

 

[41] Bo You, Trajectory statistical solutions for the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Discrete Contin. Dyn. Syst. Ser. B.27 (2022),  no. 9, 4769-4785.

 

[40] Chunxiang Zhao, Bo You, Dynamics of the three dimensional primitive equations of large-scale atmosphere. Appl. Anal. 101 (2022), no. 14, 4898-4913.

 

[39] Bo You, Qing Xia, Continuous data assimilation algorithm for the two dimensional Cahn-Hilliard-Navier-Stokes System. Appl. Math. Optim. 85 (2022), no. 2, Paper No. 5.

 

[38] Bo You, Optimal distributed control of the three dimensional planetary geostrophic equations. J. Dyn. Control Syst. 28 (2022), no. 2, 351-373.

 

[37] Fang Li, Bo You,On the dimension of global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete Contin. Dyn. Syst. Ser. B 26 (2021), no. 12, 6387-6403.

 

[36] Bo You,Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics. Evol. Equ. Control Theory 10 (2021), no. 4, 937-963.

 

[35] Bo You, Dynamics of the three dimensional viscous primitive equations of large-scale moist atmosphere. Commun. Math. Sci. 19 (2021), no. 6, 1673-1701.

 

[34] Bo You, Pullback exponential attractors for some non-autonomous dissipative dynamical systems. Math. Methods Appl. Sci. 44 (2021), no. 13, 10361-10386.

 

[33] Bo You, Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation. Discrete Contin. Dyn. Syst. 41 (2021), no. 4, 1579-1604.

 

[32] Fang Li, Bo You, Optimal distributed control for a model of homogeneous incompressible two-phase flows. J.  Dyn.  Control Syst. 27 (2021), no. 1, 153-177.

 

[31] Bo You,Pullback attractor for the three dimensional non-autonomous primitive equations of large-scale ocean and atmosphere dynamics. Comput. Math. Methods 2 (2020), no. 2, 26pp.

 

[30] Xiaoliang Feng, Bo You,Random attractors for the two dimensional stochastic g-Navier-Stokes equations. Stochastics 92 (2020), no. 4, 613-626.

 

[29] Bo You, Chunxiang Zhao, Approximation of stationary statistical properties of the three dimensional autonomous planetary geostrophic equations of large-scale ocean circulation. Discrete Contin. Dyn. Syst. Ser. B 25 (2020), no. 8, 3183-3198.

 

[28] Fang Li, Bo You,Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete Contin. Dyn. Syst. Ser. B 25 (2020), no. 1, 55-80.

 

[27] Bo You, Shan Ma, Approximation of stationary statistical properties of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics. Z. Angew. Math. Phys. 70 (2019), no. 5, 33pp.

 

[26] Bo You, Pullback exponential attractors for the viscous Cahn-Hilliard-Navier-Stokes system with dynamic boundary conditions. J. Math. Anal. Appl. 478 (2019), no. 2, 321-344.

 

[25] Bo You, Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Commun. Pure Appl. Anal. 18 (2019), no.5, 2283-2298.

 

[24] Shuaichao Pei, Yanren Hou, Bo You, A linearly second-order energy stable scheme for the phase field crystal model. Appl. Numer. Math. 140 (2019), 134-164.

 

[23] Bo You, Fang Li, Optimal distributed control of the Cahn-Hilliard-Brinkman system with regular potential. Nonlinear Anal. 182 (2019), 226-247.

 

[22] Fang Li, Bo You, Yao Xu, Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete Contin. Dyn. Syst. Ser. B. 23 (2018), no. 10, 4267-4284.

 

[21] Bo You, Fang Li, Global attractor of the three dimensional primitive equations of large-scale ocean and atmosphere  dynamics. Z. Angew. Math. Phys. 69 (2018), no.5, 13pp.

 

[20] Qi Li, Liquan Mei, Bo You, A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model. Appl. Numer. Math. 134 (2018),46-65.

 

[19] Fang Li, Bo You, Chengkui Zhong, Multiple equilibrium points in global attractors for some $p$-Laplacian equations. Appl. Anal.97 (2018), no.9, 1591-1599.

 

[18] Bo You, Fang Li, Chang Zhang,  Finite dimensional global attractor of the Cahn-Hilliard-Navier-Stokes system with dynamic boundary conditions. Commun. Math. Sci.16 (2018), no.1, 53-76.

 

[17] Fang Li, Bo You,  Random attractor for the stochastic Cahn-Hilliard-Navier-Stokes system with small additive noise. Stoch. Anal. Appl. 36 (2018), no.3, 546-559.

 

[16] Bo You,The existence of a random attractor for the three dimensional damped Navier-Stokes equations with additive noise. Stoch. Anal. Appl. 35 (2017), no.4, 691-700.

 

[15] Bo You, Random attractors for the three-dimensional stochastical planetary geostrophic equations of large-scale ocean circulation. Stochastics 89 (2017), no.5, 766-785.

 

[14] Jin Zhang, Chengkui Zhong, Bo You,The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems II. Nonlinear Anal. Real World Appl. 36 (2017),44-55.

 

[13] Bo You, Fang Li, Pullback attractors of the two-dimensional non-autonomous simplified Ericksen-Leslie system for nematic liquid crystal flows. Z. Angew. Math. Phys. 67 (2016), no. 4, 20pp.

 

[12] Bo You,Fang Li,Well-posedness and global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Dyn. Partial Differ. Equ.13 (2016), no.1, 75-90.

 

[11] Bo You, Fang Li, Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise. Stoch. Anal.  Appl.34 (2016), no.2, 278-292.

 

[10] Fang Li, Chengkui Zhong, Bo You, Finite-dimensional global attractor of the Cahn-Hilliard-Brinkman system. J. Math. Anal. Appl. 434 (2016), no.1, 599-616.

 

[9] Fang Li,Bo You,Pullback attractors for the non-autonomous complex Ginzburg-Landau type equation with $p$-Laplacian. Nonlinear Anal. Model. Control. 20 (2015), no.2, 233-248.

 

[8] Bo You,Fang Li,The existence of a pullback attractor for the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation.   Nonlinear Anal. 112 (2015), 118-128.

 

[7] Bo You, Yanren Hou, Fang Li, Jingping Jiang, Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete Contin. Dyn. Syst. Ser. B. 19 (2014), no. 6,1801-1814.

 

[6] Bo You, Fang Li, Chengkui Zhong,The existence of multiple equilibrium points in a global attractor for some $p$-Laplacian equation. J. Math. Anal. Appl. 418 (2014), no. 2, 626-637.

 

[5] Chengkui Zhong, Bo You, Rong Yang, The existence of multiple equilibrium points in global attractor for some symmetric dynamical systems. Nonlinear Anal. Real World Appl. 19 (2014), 31-44.

 

[4] Bo You, Chengkui Zhong, Fang Li, Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete Contin. Dyn. Syst. Ser. B. 19 (2014), no. 4, 1213-1226.

 

[3] Bo You, Fang Li, Pullback attractor for the non-autonomous p-Laplacian equations with dynamic flux boundary conditions. Electron. J. Differential Equations. 2014 (2014), no. 74, 11pp.

 

[2] Fang Li, Bo You, Global attractors for the complex Ginzburg-Landau equation. J. Math. Anal. Appl. 415 (2014), no. 1, 14-24.

 

[1] Bo You,Chengkui Zhong,Global attractors for p-Laplacian equations with dynamic flux boundary conditions. Adv. Nonlinear Stud. 13 (2013), no. 2, 391-410.