基于机械装备状态监测大数据,采用深度学习方法,构建“端到端”的智能故障诊断模型,实现从原始监测数据智能提取故障特征并完成高精度诊断。
代表性论文 Selected publications:
- Xiang Li*, Wei Zhang, and Qian Ding, “Cross-Domain Fault Diagnosis of Rolling Element Bearings Using Deep Generative Neural Networks”, IEEE Transactions on Industrial Electronics, 2019, 66:7, 5525-5534. [ESI高被引论文、热点论文 ESI highly cited and hot paper]
- Xiang Li, Wei Zhang*, “Deep Learning-Based Partial Domain Adaptation Method on Intelligent Machinery Fault Diagnostics”, IEEE Transactions on Industrial Electronics, 2020, 0, 0. [ESI高被引论文、热点论文 ESI highly cited and hot paper]
- Xiang Li, Wei Zhang, Qian Ding, and Xu Li*, “Diagnosing Rotating Machines with Weakly Supervised Data Using Deep Transfer Learning”, IEEE Transactions on Industrial Informatics, 2020, 16 (3), 1688-1697. [ESI高被引论文 ESI highly cited paper]
- Wei Zhang, Xiang Li*, Hui Ma, Zhong Luo, Xu Li, “Universal Domain Adaptation in Fault Diagnostics with Hybrid Weighted Deep Adversarial Learning ”, IEEE Transactions on Industrial Informatics, 2021, 0, 0. [ESI高被引论文、热点论文 ESI highly cited and hot paper]
- Wei Zhang, Xiang Li*, Hui Ma, Zhong Luo, Xu Li, “Open Set Domain Adaptation In Machinery Fault Diagnostics Using Instance-Level Weighted Adversarial Learning”, IEEE Transactions on Industrial Informatics, 2021, 17: 11, 7445-7455.
- Xiang Li*, Wei Zhang, Nan-Xi Xu, and Qian Ding, “Deep Learning-Based Machinery Fault Diagnostics with Domain Adaptation Across Sensors At Different Places”, IEEE Transactions on Industrial Electronics, 2020, 67 (8), 6785-6794. [ESI高被引论文 ESI highly cited paper]